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• Study of a four dimensional piecewise linear system with three different time scales.
• Proof of existence of an attractive limit cycle with complex Mixed-Mode oscillations.
• Interacting canard phenomena underlying changes and exchanges in oscillations number.
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a b s t r a c t

In this work, we analyze a four dimensional slow–fast piecewise linear system with three time
scales presenting Mixed-Mode Oscillations. The system possesses an attractive limit cycle along which
oscillations of three different amplitudes and frequencies can appear, namely, small oscillations, pulses
(medium amplitude) and one surge (largest amplitude). In addition to proving the existence and
attractiveness of the limit cycle, we focus our attention on the canard phenomena underlying the changes
in the number of small oscillations and pulses. We analyze locally the existence of secondary canards
leading to the addition or subtraction of one small oscillation and describe how this change is globally
compensated for or not with the addition or subtraction of one pulse.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [1], we considered a piecewise linear (PWL) version of
the system initially proposed in [2,3], a model introduced in a
context of mathematical neuroendocrinology. The original smooth
model in [2,3] consists of a four dimensional (4D) system made of
two coupled FitzHugh–Nagumo subsystems running on different
timescales, in which the fast subsystem is forced by the slow
subsystem. We replaced in [1] the original FitzHugh–Nagumo
subsystems [4,5] by two PWL equivalents (McKean caricatures [6]).
This change allowed us to obtain more information on the
dynamics as well as a more direct control of the quantitative
features of the system output. A typical orbit of the PWL model
possesses a periodic behavior with oscillations of two different
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amplitudes and frequencies: a series of pulses (mediumamplitude)
and one surge (larger amplitude).

The smoothmodel, with three different time scales, can display
Mixed-Mode Oscillations (MMOs) of three different types [7].
Apart from the pulses and surge, a pause may exist between the
end of the surge and the resumption of the pulses, where small
oscillations take place, see Fig. 1 in [7]. However, the McKean
caricatures do not capture the existence of such small oscillations.
Here, we propose an extension of the model considered in [1]. In
the new extended model, small oscillations can happen, see Fig. 1.
Such small oscillations are underlain by the existence of a canard
explosion in the fast system. To obtain a proper canard explosion
in a PWL system, one small extra linearity zone is necessary, as it
has been pointed out in [8–10].

The present work focuses on the mechanisms underlying
the creation–destruction of the resulting small oscillations and
describes how the addition or loss of one small oscillation after
the surge is possibly compensated for by the loss or addition
of one pulse before the surge. In the smooth model, such a
compensation mechanism has been explored numerically [7] and
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it turned out to be too complicated to be studied analytically. The
PWL nature of the system proposed in this work allows us to better
understand the dynamical mechanisms than in the case of the
smooth model. More specifically, we find two remarkable results.
First, the number of small oscillations needed to be lost in order to
win one pulse increases while we decrease the intermediate time
scale of the system. Second, as the system goes through the canard
explosion, one pulse disappears at the end of the pulsatility phase
and another is created from a small oscillation at the beginning
of the pulsatility phase. We describe in detail these facts along
the paper and more specifically in Proposition 3 and Theorem 3.
Moreover, fixing the time scales, we are able to control the number
of small oscillations as well as the addition or subtraction of pulses
just by tuning a regular parameter of the system.

We note that our method of counting small oscillations relies
heavily on the presence of an attracting limit cycle which includes
the sequence of small oscillations as a part of its trajectory. A more
general method for counting small oscillations and computing
secondary canards is provided in [10]. The main novelty of our
paper is the study of the interaction of two canard phenomena,
both occurring dynamically, one at the corner point of the fast
nullcline and another at the small zone replacing the other critical
point, see Fig. 2. The context of PWL systems, due to its simplicity
and the availability of explicit formulas, provides a suitable context
for this study.

Here, we consider the following class of 4D PWL slow–fast
systems,
ẋ = −y + f (x),
ẏ = δ(x + a2 + cX),

(1)
Ẋ = δ(−Y + g(X)),

Ẏ = εδ(X + b1Y + b2),
(2)

where

f (x) =


−x − 2, if x ≤ −1,
x, if x ∈ (−1, 1 −

√
δ],

1 −
√

δ, if x ∈ (1 −
√

δ, 1 +
√

δ),

−x + 2, if x ≥ 1 +
√

δ,

(3)

and

g(X) =


−X − k2 − 1, if X ≤ −1,
k2X, if |X | ≤ 1,
−X + k2 + 1, if X ≥ 1,

with (x, y, X, Y )T ∈ R4, 0 < ε, δ ≪ 1, b1 ≥ 0, a2, b2, c, k1, k2
are real and positive, and the overdot denotes the derivative with
respect to time variable t . Let us call the zones of subsystem (1)
the left, center, extra or right zone, when the corresponding first
variable x is, respectively, smaller that−1, between−1 and 1−

√
δ,

between 1 −
√

δ and 1 +
√

δ or larger than 1 +
√

δ (see the PWL-
nullcline in Fig. 2). Sometimes we will use the superscripts L, C, E
and R, to specify the referred zone. Note that the size of the extra
zone (2

√
δ) has been chosen following [8] in order to give rise to a

canard explosion in subsystem (1). In the same way, we call the
zones of subsystem (2) the left, center, or right zone, when the
corresponding first variable X is smaller than−1, between−1 and
1or larger than 1.Wealso use the superscripts L, C andR, to specify
the referred zone. Note that, for the sake of simplicity, we study
here the case where the y-nullcline is vertical.

System (1)–(2) consists of two coupled planar oscillators, one in
variables x, y and the other in variables X, Y . The coupling is one-
way, that is, the subsystem in variables X, Y evolves independently
and we call it the forcing system. Variable X is forcing the (x, y) 2D
system by changing dynamically the location of the y-nullcline.

System (1)–(2) is slow–fast with three time scales, namely, 1,
δ and εδ. The forcing system (X, Y ) evolves more slowly than the

forced system (x, y). Bearing this inmind,we call the forcing system
the slow system and the forced system the fast system. Moreover,
each of the two planar systems is also slow–fast, with slow variable
y and Y , respectively, and fast variable x and X , respectively.

Let us first consider some assumptions, in order to obtain the
MMOs which were observed in the smooth system in [7], and
explain briefly the dynamical behavior of the system.

(H1) The forcing system (2) has a relaxation limit cycle. We can
divide the limit cycle into four parts, (see Fig. 3):
I. X ∈ (Xmin, −1), Y < g(X),
II. X ∈ (−1, Xmax), Y < g(X),
III. X ∈ (1, Xmax), Y > g(X),
IV. X ∈ (Xmin, 1), Y > g(X).
Note that, as ε → 0 the cycle is approaching the X-nullcline
in the right and left zones and jumps almost horizontally
when it reaches the middle zone. We use the approximation

Xmin ≃ −2k2 − 1 − ε(1 + b2 + b1k2) and
Xmax ≃ 2k2 + 1 + ε(1 − b2 + b1k2),

(4)

valid for ε small enough.
(H2) |a2 − 1| < c.

Under hypothesis (H2), the vertical nullcline crosses the
separation line x = −1 rightwards at a time when |X | < 1,
therefore, when X (considered as the bifurcation parameter)
travels along the limit cycle with the fast motion, see Figs. 3
and 9. At the crossing time, a left canard superexplosion
bifurcation occurs, that is, the system presents a bounded
continuum of canard homoclinic orbits from the equilibrium
point and by moving X in such a way that the equilibrium
enters the central zone, one large relaxation oscillation
limit cycle is created (see Figs. 4 and 5 in [11]). The term
superexplosion comes from the fact that instead of successive
canard cycles curves ending up in the relaxation cycle, in this
case, there is a continuum of canard homoclinic cycles that
take place all at the same time, and the relaxation cycle is
born instantaneously from this continuum. For more details
about the canard superexplosion bifurcation see [11].

Here, in contrast to [1], we do not impose any upper
bound for c. As a consequence, the rightmost location of the
y-nullcline can reach the right zone, hence a right canard
explosion bifurcation (actually, the PWL equivalent) [8] can
occur while X is along the relaxation limit cycle, see Fig. 9.
The right canard explosion bifurcation takes place when the
equilibrium point is located in the extra zone, that is, x ∈

(1 −
√

δ, 1 +
√

δ). We explain this case in detail in the
following lines.

Remark 1. Note that, as it was explained in detail in Remark 4
of [1], tuning parameter b1 enables us to adjust the pulse frequency,
more specifically, the duration of the low-frequency part of the
pulsatile regime with respect to that of the high frequency part.
As in this article we are no more interested in fitting our model
to biological specifications, we have fixed b1 = 0 along all the
simulations. Regarding parameter a2, we only need to be sure that
hypothesis (H2) |a2 − 1| < c is satisfied. We have chosen a2 = 2
because in this case (H2) reads c > 1, but another value could be
equally chosen.

The value of X determines the location of the y-nullcline, hence
the location of the unique equilibrium point of the fast system (see
Fig. 8, for instance). If the value of X is such that the equilibrium
point is located in zone R or L, then the fast systemhas a stable node
and the orbits are approaching it. If the location of X is such that
the equilibrium point is located in the central zone, then the orbits
oscillate across the four linearity zones around the equilibrium
point. Finally, if the location of X is such that the equilibrium point
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