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h i g h l i g h t s

• We study the stability of fronts in a model of combustion in porous media.
• We assume that the Lewis number is chosen in a specific way.
• We use a combination of energy estimates and Evans function computations.
• We prove nonlinear stability under the condition that there is no unstable spectrum.
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a b s t r a c t

In this paper we study the stability of fronts in a reduction of a well-known PDE system that is used to
model the combustion in hydraulically resistant porous media. More precisely, we consider the original
PDE system under the assumption that one of the parameters of the model, the Lewis number, is chosen
in a specific way and with initial conditions of a specific form. For a class of initial conditions, then the
number of unknown functions is reduced from three to two. For the reduced system, the existence of
combustion fronts follows from the existence results for the original system. The stability of these fronts
is studied here by a combination of energy estimates and numerical Evans function computations and
nonlinear analysis when applicable. We then lift the restriction on the initial conditions and show that
the stability results obtained for the reduced system extend to the fronts in the full system considered for
that specific value of the Lewis number. The fronts that we investigate are proved to be either absolutely
unstable or convectively unstable on the nonlinear level.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sivashinsky and his collaborators in [1] proposed a model de-
scribing combustion in inert porousmedia under condition of high
hydraulic resistance,

Tt − (1 − γ −1)Pt = ϵTxx + YF(T ),
Pt − Tt = Pxx,

Yt = ϵLe−1Yxx − γ YF(T ),

(1)

where Y is the scaled concentration of the reactant in the reaction
zone, P is the pressure, and T is the temperature. The specific heat
ratio γ > 1, the Lewis number Le > 0, and the ratio of pressure

∗ Corresponding author.
E-mail addresses: ghazarar@miamioh.edu (A. Ghazaryan), lafortunes@cofc.edu

(S. Lafortune), peterm@cs.earlham.edu (P. McLarnan).

and molecular diffusivities ϵ > 0 are physical characteristics of
the fuel. The reaction rate YF(T ) may or may not have an ignition
cut-off, that is, F(T ) = 0 on an interval [0, Tign] and F(T ) > 0 and
increasing for T > Tign. For F(T ) Lipschitz continuity is assumed
everywhere, except at the ignition temperature T = Tign. Papers
[1–4] contain detailed explanations and the deduction of this sys-
tem.

In [5] it is suggested to consider this system with initial condi-
tions

T (0, x) = T0(x), Y (0, x) = 1, P(0, x) = 0.

It is also assumed that ϵ is significantly smaller than other param-
eters, therefore a simplification of (1) is offered in the literature
which is obtained by setting ϵ = 0,

Tt − (1 − γ −1)Pt = YF(T ),
Pt − Tt = Pxx,

Yt = −γ YF(T ).

(2)
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We point out that the terms ϵTxx and ϵLe−1Yxx in (1) are singu-
lar perturbations, so results obtained for the system (2) should be
dealt with caution, as singularly perturbed systems in general may
support a behavior significantly different than one observed in the
limiting system.

This paper is devoted to the study of the stability of traveling
fronts in the system (1). Traveling fronts are solutions of the
underlying PDE (1) that have a form T (x, t) = T (ξ), P(x, t) = P(ξ),
Y (x, t) = Y (ξ), with ξ = x − ct , where c is the a priori unknown
front speed, and that asymptotically connect distinct equilibria at
±∞. These solutions are sought as solutions of the traveling wave
ODEs

−cT ′
+ c(1 − γ −1)P ′

= ϵT ′′
+ YF(T ),

P ′′
= c(T ′

− P ′), (3)

cY ′
+ ϵY ′′

= γ YF(T ),

that satisfy boundary-like conditions at ±∞ which we describe
below.

Generally speaking, the equilibria of the system (2) are states
where YF(T ) = 0, so they can be described as the states where
there is no fuel Y = 0, or as the cold states T < Tign. From physical
considerations two of the equilibria are of interest, the completely
burnt state P = 1, T = 1, Y = 0, and the unburnt state where all of
the fuel is present T = 0, P = 0, Y = 1. So we consider the system
(2) together with the boundary conditions

P(−∞) = 1, T (−∞) = 1, Y (−∞) = 0,
T (+∞) = 0, P(+∞) = 0, Y (+∞) = 1.

The existence and uniqueness of fronts in the system (2) has
already been established in [6], under the assumption on the
parameters 0 < Tign < 1− γ −1. Moreover, it is already known [7],
that the front in (2) that satisfies the boundary conditions above is
unique, up to translation. In [2] it is shown that as ϵ approaches 0,
the ϵ-dependent fronts in (2) converge to the fronts of

−cT ′
+ c(1 − γ −1)P ′

= YF(T ),

P ′′
= c(T ′

− P ′), (4)

cY ′
= γ YF(T ).

It is also known [8] that the solution in the limiting system (3)
persists as a unique solution of speed of order O(1) of the system
(2) with 0 < ϵ ≪ 1. We note that in [8] it is assumed that Le = 1,
but this assumption can be removed because it does not affect the
result of the paper in any way.

The stability of fronts in the system (2) has been addressed
in [9]. There an Evans function approach was used to find parame-
ter regimes where the front is absolutely unstable. In other words,
it was shown that there are parameter regimes where small per-
turbations to the front grow exponentially fast, in the co-moving
frame. More importantly, parameter regimes were found where
the front is convectively unstable, which means that small pertur-
bations to the front that are initially localized near the rest state
(P, T , Y ) = (1, 1, 0) stay near that equilibrium.

To our knowledge, for no parameter values the stability of the
traveling fronts in (1) (with ϵ > 0) has been yet addressed. We
point out that since the perturbation with small ϵ is singular, the
stability (instability) of a front in the limiting system (2) does not
directly imply the stability (instability) of the front in (1), even
when ϵ is very small. While we follow the same standard sequence
of steps as we did in [9] for the case ϵ = 0, from a technical
point of view our analysis is significantly different. Indeed, the
case ϵ = 0 is a singular limit of Model (1) in the sense that
the order of the system is reduced by two (in [9], the order is
furthermore reduced by one by using special initial conditions).
It is well known that properties of existence and stability in a

singular limit do not have to hold in general, even when ϵ is small
(see for example [10]). In this paper, we consider another singular
limit for Model (1). This limit is obtained by choosing a particular
value for the Lewis number, in the presence of a strictly positive
ϵ, and the initial conditions to satisfy (9). This choice reduces the
order of Model (1) by two. One main difference with the limit
ϵ = 0 studied in [9] is that in the reduction of Model (1) that we
consider here the dimension of the linearization is larger, making
the Evans function computation more complicated. Namely, we
had to use the definition of the Evans function that involves
the wedge product as opposed to the definition corresponding
to a linear system with a one-dimensional stable manifold as
in [9], which is simpler and less numerically sensitive because the
Evans function is defined by the scalar product of two solutions.
Moreover, the nature of the energy estimates computed in both
papers is completely different. This is because the orders of the
systems studied in [9] and here are not the same.

As one would expect, the numerical calculation of the Evans
function assumes a more precise definition of the reaction term
than the one given at the beginning of the introduction, therefore
we base our analysis on the assumption [11] of a discontinuous
reaction rate is

Fd(T ) =

exp

Z


T − h
σ + (1 − σ)T


, T ≥ Tign,

0, T < Tign,
(5)

where Z > 0 is the Zeldovich number, and 0 < σ < 1 is the ratio
of the characteristic temperatures of fresh and burned reactant.

The discontinuity in the reaction term is often introduced
in combustion models [12] to account for the fact that for low
temperatures the reaction rate is many orders less than the
reaction rate at high temperatures.

However, to work with a well-defined linear operator obtained
by linearizing the reaction term about the continuous front, we
follow the recipe given in [9] and consider a smooth F , which is
defined like Fd everywhere except for a small interval (Tign, Tign +

2δ) where the function is modified so as to go to zero in a smooth
and monotonic fashion, for example, as

Fδ(v) =



exp

Z


v − h
σ + (1 − σ)v


, v ≥ Tign + 2δ,

exp

Z


v − h
σ + (1 − σ)v


Hδ(v − Tign − δ),

Tign ≤ v < Tign + 2δ,
0, v < Tign,

(6)

where

Hδ(x) =


1

1 + e
4xδ

δ2−x2
, for |x| < δ,

1, for x ≥ δ,
0 for x ≤ −δ,

or some other smooth approximation of the Heaviside function H .
In otherwords,Hδ is a function such that in the distributional sense
limδ→0+ Hδ

= H , and Hδ(x) = 1, for x > δ, Hδ(x) = 0, for x < −δ.
For numerical computations in Sections 3 and 5, we choose δ

small enough so that the front velocity in the systemwith Fδ is close
to the velocity in the system with Fd.

It is known [9] that for the system with ϵ = 0 the front
solution with F = Fδ converges as δ → 0+ to the front of the
system with the reaction rate given by Fd. The situation is more
complicated when ϵ > 0. The fronts in the ϵ > 0 case exist for
any δ ≥ 0. The proof is by construction and is based on geometric
singular perturbation theory which guarantees continuity in δ as
long as Fδ is smooth, i.e. for δ > 0. The existing analytic proof
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