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a b s t r a c t

In this investigation we develop and validate a computational method for reconstructing constitutive
relations based onmeasurement data, applicable to problems arising in nonequilibrium thermodynamics
and continuummechanics. This parameter estimation problem is solved as PDE-constrained optimization
using a gradient-based technique in the optimize-then-discretize framework. The principal challenge is
that the control variable (i.e., the relation characterizing the constitutive property) is not a function of
the independent variables in the problem, but of the state (dependent) variable. The proposed method
allows one to reconstruct a smooth constitutive relation defined over a broad range of the dependent
variable. It relies on three main ingredients: a computationally friendly expression for the cost functional
gradient, Sobolev gradients used in lieu of discontinuous L2 gradients, and a systematic technique for
shifting the identifiability region. The performance of this approach is illustrated by the reconstruction of
the temperature dependence of the thermal conductivity in a one-dimensional model problem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Reliable mathematical and computational modeling of physical
processes depends on our knowledge of the relevant properties of
the materials involved. Obtaining such properties is particularly
challenging when the materials are of a less common type. For
example, when investigating thermo-fluid phenomena occurring
in liquid metals, one needs to know the coefficients of viscosity,
thermal diffusivity, surface tension, etc., for the specific alloys. This
task is often made more difficult by the fact that these coefficients
tend to depend on the temperature in a complicated way. As
a result, precise information about such material properties is
rarely available, except for some common materials. The goal
of this investigation is to propose and validate a computational
method that will allow one to reconstruct suchmaterial properties
based on some measurements available for a particular process
(e.g., heat conduction) and a particular material. The specific
motivation for this investigation comes from our research on the
optimization of multiphysics phenomena involved in advanced
welding processes [1], where accurate data concerning material
properties is quite important. While our intended applications
concern more complicated systems, for the sake of clarity in this
paper our approach is developed and validated based on a fairly
simple model problem.
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In principle, as regards the inverse problem of parameter esti-
mation, one can consider two distinct formulations:

• material properties depending on the space variable x (i.e., the
independent variable in the problem), and

• material properties depending on the state variable T (i.e., the
dependent variable in the problem).

Problems of the first type have in fact received quite a lot of atten-
tion in the literature, andwe refer the reader to themonographs [2]
and [3,4] for surveys of themathematical andmore applied aspects
of these problems, respectively. For example, as the reconstructed
parameters are functions of the space variables, these problems
represent the foundation of numerous imaging techniques inmed-
ical diagnostics, such as, e.g., X-ray tomography [4], as well as in
geosciences [5]. Problems of this type are at least in principle rel-
atively well understood, and there exist several established meth-
ods for their solution.

In this paper our focus will be exclusively on parameter
estimation problems of the second type in which we want to
determine the material properties as a function of the state
(i.e., dependent) variable, e.g., the temperature T , rather than the
position in space (the independent variable). In other words, we
seek a relationship between the material property and the state
variable that holds uniformly at every point x of the domain
Ω in which the problem is formulated. This problem seems to
have received less attention in the literature than the problem of
estimating the space-dependent material properties. Foundations
of an optimization-based approach to the solution of this problem
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were laid in the work of Chavent and Lemonnier [6] (which
to the best of our knowledge never appeared in the English
language),where the authors established the existence of solutions
to the problem and derived expressions for the gradient of the
least-squares error functional. They also showed the results of
computations inwhich the cost functional gradientswere obtained
based on a suitably-defined adjoint system. Similar problems
were also considered by Alifanov et al. [7,8], except that in their
formulation the dependence of the material property on the
state variable was assumed in the form of a spline interpolant,
effectively resulting in a finite-dimensional optimization problem.
A computational approach also based on a least-squares error
functional and a linearization of the problem via a suitable
change of variables was considered by Tai and Kärkkäinen [9]. An
alternative technique utilizing the adjoint equations, but without
making use of the error functional, was proposed by DuChateau
et al. [10], whereas Janicki and Kindermann studied a method
combining Green’s functions and Landweber’s iteration applied to
the parameter-to-measurements map [11]. A different approach,
based on the ‘‘equation error method’’, was pursued by Hanke
and Scherzer [12] who also considered a discrete formulation.
Somemathematical aspects of the inverse problem of determining
the state-dependent diffusion coefficients were addressed by
Kügler [13,14] who investigated the Tikhonov regularization, by
Neubauer [15]who studied regularization using adaptive grids and
also byDuChateau et al. [16,17]. Some analytical results concerning
this problemposed in an infinite domainwere also reported in [18].
In the present investigation we consider an optimization-based
approach to the estimation of a state-dependent material property
and the main contributions of our work are as follows

• we provide a novel expression for the gradient of the cost func-
tional which is more computationally tractable than the for-
mula originally derived in [6],

• recognizing that in the standard formulation (based on the L2
inner products) the cost functional gradients may be discon-
tinuous, we develop an approach ensuring a required degree of
smoothness of the reconstructed material properties, and

• noting that in a given problem reconstruction is normally lim-
ited to the corresponding ‘‘identifiability region’’ (defined be-
low), we propose a systematic experimental design procedure
that allows one to tune inputs to the system, so that the consti-
tutive relation can be reconstructed over a broader range of the
state variable.

While adjoint analysis is now routinely used to solve partial
differential equation (PDE)-constrained optimization problems
[19], we emphasize that the structure of the gradients in the
present problem is in fact quite different fromwhat is encountered
in typical problems [20]. The reason is that the optimization
variable is a function of the dependent, rather than independent,
variables in the problem. We also add that, in contrast to
the results reported in some of the references quoted above,
our approach is formulated in the ‘‘optimize-then-discretize’’
framework, i.e., while we ultimately discretize the problem for
the purpose of a numerical solution, our optimality conditions and
the cost functional gradients are derived in the continuous (PDE)
setting. As a consequence, the main constituents of our approach
are independent of the specific discretization used.

In order to ensure the applicability of our proposed approach to
a broad array of problems in continuum mechanics and nonequi-
librium thermodynamics, we formulate it in terms of reconstruc-
tion of constitutive relations. Thus, we will consider the optimal
reconstruction of isotropic constitutive relationships between
thermodynamic variables based on measurements obtained in a

spatially-extended system. In other words, assuming the constitu-
tive relation in the following general form[
thermodynamic

flux

]
= k (state variables)

[
thermodynamic

‘‘force’’

]
, (1)

our approach allows us to reconstruct the dependence of the
transport coefficient k on the state variables consistent with
the assumed governing equations. Constitutive relations in the
form (1) arise in many areas of nonequilibrium thermodynamics
and continuum mechanics. To fix attention, but without loss
of generality, in the present investigation we focus on a heat
conduction problem in which the heat flux q represents the
thermodynamic flux, whereas the temperature gradient ∇T is the
thermodynamic ‘‘force’’, so that relation (1) takes the specific form

q(x) = −k(T ) ∇T (x), x ∈ Ω, (2)

where Ω ⊂ Rn, n = 1, 2, 3, is an open domain in which the
problem is formulated. We note that by assuming the function
k : R → R to be given by a constant, we recover the well-
known linear Fourier law of heat conduction. While expressions
for the transport coefficients such as k(T ) are typically obtained
using methods of statistical thermodynamics, in the present
investigation we will show how to reconstruct the function
k(T ) based on some available measurements of the spatial
distribution of the state variable T combined with the relevant
conservation law. Such a technique could be useful, for example,
to systematically adjust the form of a constitutive relationship
derived theoretically to better match actual experimental data.
Combining constitutive relation (2) with an expression for the
conservation of energy, we obtain a partial differential equation
describing the distribution of the temperature T in the domain Ω

corresponding to the distribution of heat sources g : Ω → R and
suitable boundary conditions (for example, of the Dirichlet type),
i.e.,

−∇ · [k(T ) ∇T ] = g in Ω, (3a)
T = T0 on ∂Ω, (3b)

where T0 denotes the boundary temperature. Instead of (3b),
we could also consider Neumann boundary conditions involving
k(T ) ∂T

∂n , where n is the unit vector normal to the boundary ∂Ω

and pointing out of the domain, and our subsequent analysis
would essentially be unchanged. In regard to reconstruction
of constitutive relations, it is important that such relations be
consistent with the second principle of thermodynamics [21].
There exist twomathematical formalisms, one due to Coleman and
Noll [22] and another one due to Liu [23], developed to ensure
in a very general setting that a given form of the constitutive
relation does not violate the second principle of thermodynamics.
In continuous thermodynamical and mechanical systems this
principle is expressed in terms of the Clausius–Duhem inequality
[24]which in the case of the present simplemodel problem (2)–(3)
reduces to the statement that k(T ) > 0 for all values of T . At
the same time, the condition k(T ) > 0 is also required for the
mathematical well-posedness of elliptic boundary value problem
(3). In addition, to ensure the existence of classical (strong)
solutions of (3), we will assume that the heat source g(x) > 0
is at least a continuous function of x. This appears reasonable
taking into account possible physical phenomena represented by
this term. The positivity of g allows us to establish a lower bound
on classical solutions of problem (3), cf. Appendix A.

We now define two intervals:

• [Tα, Tβ ] , [minx∈Ω T (x),maxx∈Ω T (x)] which represents the
range spanned by the solution of problem (3); we note that,
as demonstrated in Appendix A, the minimum Tα is attained at
the boundary ∂Ω; following [14], we will refer to the interval
I , [Tα, Tβ ] as the identifiability interval,
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