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Theory of singular vortex solutions of the nonlinear Schrödinger equation
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Abstract

We present a systematic study of singular vortex solutions of the critical and supercritical two-dimensional nonlinear Schrödinger equation. In
particular, we study the critical power for collapse and the asymptotic blowup profile of singular vortices.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The focusing d-dimensional nonlinear Schrödinger equation (NLS)

iψt (t, x)+ ∆ψ + |ψ |
2σψ = 0, ψ(0, x) = ψ0(x), (1)

where x = (x1, x2, . . . , xd) and ∆ = ∂x1x1 + · · · + ∂xd xd , is one of the canonical nonlinear equations in physics, arising
in various fields such as nonlinear optics, plasma physics, Bose–Einstein condensates (BEC), and surface waves. The NLS
(1) is called subcritical if σd < 2. In this case, all solutions exist globally. In contrast, solutions of the critical (σd = 2)
and supercritical (σd > 2) NLS can become singular in finite time 0 < Tc < ∞, i.e., limt→Tc ‖ψ‖H1 = ∞, where

‖ψ‖H1 =

√∫
|ψ |2 dx +

∫
|∇ψ |2 dx. See, e.g., [1] for more information.

In this study we consider singular solutions of the two-dimensional NLS, which in polar coordinates is given by

iψt (t, r, θ)+ ψrr +
1
r
ψr +

1

r2ψθθ + |ψ |
2σψ = 0, ψ(0, r, θ) = ψ0(r, θ). (2)

This equation is critical when σ = 1 and supercritical when σ > 1. We focus on vortex solutions of the form

ψ(t, r, θ) = A(t, r)eimθ , m ∈ Z. (3)

It is relatively easy to produce optical vortices experimentally. As a result, vortices have been intensively studied, both theoretically
and experimentally, in the nonlinear optics literature. More recently, vortex solutions have been studied, both theoretically and
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experimentally, in Bose–Einstein condensates (BEC).1 However, almost all of this research effort has been on non-collapsing
vortices. In fact, to the best of our knowledge, the only studies of collapsing vortex solutions are those of Kruglov and co-workers [3,
4] and of Vuong et al. [5]. Therefore, there is a huge gap between the available theory on non-vortex and vortex singular NLS
solutions.

In this study, we present a systematic study of singular vortex solutions of the critical and supercritical NLS (2). In particular,
we ask to what extent the available theory for singular NLS solutions remains valid for the subset of singular vortex solutions.
Of course, all the rigorous results that were previously derived for singular NLS solutions remain valid for the special case of
vortex solutions. As we shall see, however, in some cases stronger results can be obtained for collapsing vortices (e.g., the critical
power for collapse). In addition, we find that some of the non-rigorous results for singular non-vortex solutions that were derived
using asymptotic analysis and numerical simulations (e.g., stability of blowup profiles) do change for vortex solutions. Intuitively,
the main reason for this qualitative difference is that vortex solutions must vanish at the origin, where the phase is undefined.
Therefore, singular vortex solutions that collapse at the origin are identically zero there and must have a ring profile. This is very
different from non-vortex singular solutions, whose amplitude at the collapse point increases to infinity as they collapse, regardless
of whether their peak value is at the collapse point (i.e., peak-type solution) or not (i.e., ring-type solution).

The paper is organized as follows. In Section 2, we recall the conservation laws of the NLS (2). In Section 3, we consider
stationary vortex solutions of the form ψ

stationary
m,k = Rm,k(r)eiλt+imθ .

In Section 4, we systematically study vortex solutions of the critical (σ = 1) two-dimensional NLS

iψt (t, r, θ)+ ψrr +
1
r
ψr +

1

r2ψθθ + |ψ |
2ψ = 0, ψ(0, r, θ) = ψ0(r, θ). (4)

In Section 4.1, we study the profiles Rm,k(r) of the stationary vortex solutions and in particular the ground state profile Rm,0. In
Section 4.2 we show that as in the vortex-free case, there are two types of explicit blowup solutions of the critical NLS (4): ψexplicit

Rm

with a linear blowup rate which are in H1, and ψexplicit
Gm

with a square-root blowup rate which are not is H1. However, while in the

vortex-free case, ψexplicit
R0

is a peak-type solution and ψexplicit
G0

is a ring-type solution, in the vortex case, both ψexplicit
Rm

and ψexplicit
Gm

are ring-type solutions. Moreover, unlike ψexplicit
G0

, these singular vortex ring solutions are identically zero at the singularity point

r = 0. In Section 4.3 we consider the critical power (L2 norm) for collapse in the critical NLS (4). Recall that in the non-vortex
case the critical power is equal to Pcr =

∫
|R0,0|

2 rdr , where R0,0 is the ground state solution of

R′′
+

1
r

R′
− R + R3

= 0, R′(0) = 0, R(∞) = 0. (5)

In contrast, the critical power for radially-symmetric vortex initial conditions of the form ψ0 = A0(r)eimθ is Pcr(m) =∫
|Rm,0|

2 rdr , where Rm,0 is the ground state solution of

R′′
m(r)+

1
r

R′
m −

(
1 +

m2

r2

)
Rm + R3

m = 0, R′
m(0) = 0, Rm(∞) = 0.

The critical power Pcr(m) increases with m, and is approximately given by Pcr(m) ≈ 4
√

3m. In particular, it is significantly larger
than Pcr := Pcr(m = 0) ≈ 1.86. In [3], Kruglov and Logvin estimated the value of Pcr(m) by assuming that the vortex solution
collapses with a self-similar Laguerre-Gaussian profile. We show that this estimate is a crude upper bound, and that this is due to
the use of the aberrationless approximation and the fact that the Laguerre-Gaussian profile does not provide a good approximation
of Rm,0. In addition, we provide a simple criterion to determine whether an initial profile is “close” to Rm,0, in which case the
excess power above Pcr(m) needed for collapse is “small”. We then ask what is the critical power when the initial vortex profile is
not radially-symmetric, e.g, when ψ0 = A0(x, y)eimθ where A0 is real but not symmetric in r . In Section 4.3.3 we show that in this
case, the vortex solution can collapse with power below Pcr(m) but, of course, above Pcr. This is exactly opposite from the non-
vortex case, in which deviations from radial symmetry increase the threshold power for collapse [6]. The reason for this difference
is as follows. In the vortex-free case, the ψR0,0 profile is stable under symmetry-breaking perturbations. In contrast, vortices are
unstable under symmetry-breaking perturbations and, when perturbed azimuthally, they break into a ring of filaments. Since these
filaments do not collapse at r = 0, the vorticity does not prohibit them from collapsing with the R0,0 profile. Hence, the critical
power for collapse of each of the filaments is Pcr = Pcr(m = 0). In Section 4.4 we show that as in the vortex-free case, all stationary
vortex solutions are strongly unstable. In Section 4.5 we show that as in the vortex-free case, the explicit vortex blowup solution
ψ

explicit
Rm,0

is unstable.
Section 4.6 is devoted to the study of the asymptotic blowup profiles of critical vortex solutions. In [7], Merle and Raphael proved

that all singular solutions of the critical NLS (4) with power is slightly above Pcr collapse with the asymptotic ψR0,0 profile and that

1 For a recent review on vortices in Optics and in BEC, see [2].
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