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HIGHLIGHTS

Simple nonlinear models connect golden stars and fractal spectra.

Facilitate a synergy between nonlinear dynamicists and astronomers.
Suggest new directions for variable star astronomy.

Variable stars may reflect universal nonlinear phenomena common to simple systems.
Simple ratios define some astrophysical resonances, golden ratios describe others?
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Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently
facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the
search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114
(2015) 054101] that the Kepler data includes “golden” stars, whose luminosities vary quasiperiodically
with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law
scaling with exponent near —1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we
use a series of phenomenological models to make plausible the connection between golden stars and
fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal
nonlinear phenomena common to even simple systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The quality of the best stellar brightness time series has recently
improved to the point where sophisticated nonlinear analysis be-
comes possible. For example, we recently used Kepler spacecraft
data to analyze RR Lyrae variable stars [1,2] and identify a class
of “golden” stars, whose luminosities vary quasiperiodically with
two frequencies nearly in the golden ratio, and whose secondary-
frequencies exhibit power-law scaling that suggests strange non-
chaotic dynamics [3-5].

Many RR Lyrae and Cepheid multifrequency variable stars ap-
pear to cluster [6-10] about distinct frequency ratios, including a
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ratio of approximately 0.62, as in Fig. 1. A nonlinear dynamics per-
spective [11] immediately suggests that this is the (inverse) golden

ratio1/¢ = 0.618... ., afrequency ratio that features prominently
in quasiperiodic systems and the famous KAM perturbation theo-
rem [12].

Does the multifrequency variable star clustering near the
golden ratio result from complicated and particular interactions
of higher-order non-radial stellar modes [8]? Or does it reflect
some universal behavior, like the critical exponents that charac-
terize phase transitions, which are common to even simple non-
linear models? Are these stars accidentally golden or fundamentally
golden?

This article presents a series of elementary nonlinear models
or analogues of golden stars. These phenomenological models
complement ongoing work to develop ab initio hydrodynamic
variable star models [13,14]. Instead of a bottom-up derivation
from variable star hydrodynamics to golden-ratio quasiperiodicity
and fractal scaling, which may be very difficult, we offer a
top-down approach consisting of a sequence of simple models
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Fig. 1. Variable star Petersen diagram of period ratio T, /T; versus primary period
T;/d in days has many multifrequency variable stars clustering near the inverse
golden ratio 1/¢. This is a rescaled version of Moskalik’s Fig. 2 [6].

designed to make such a connection credible. The success
in nonlinear dynamics of simple models embodying universal
features may thereby generalize to variable star astronomy.

We first heuristically motivate the spectral distribution metric
used to identify strange nonchaotic dynamics or singular spectra.
After summarizing our most recent nonlinear golden star analysis
and reviewing some of the relevant and unique properties of the
golden ratio ¢, we describe the models. Simple network models
demonstrate how to easily or subtly introduce the golden ratio in
stellar caricatures. Potential energy models create stylized versions
of golden star spectral distributions or dynamical attractors. An
unforced generalized Lorenz flow exhibits golden star scaling.
A twist map suggests circumstances in which some dynamical
systems can evolve into golden ratio configurations. Finally, we
suggest possible new directions for astronomy from nonlinear
dynamics.

2. Spectral distribution

Analysis of the Fourier spectrum of a time series can reveal
subtle nonlinear dynamics [15]. In particular, strange nonchaotic
dynamics [3-5] with singular spectra [16,17] is dynamics between
order and chaos first identified numerically and analytically in
quasiperiodically forced systems in the 1980s. The obvious strange
nonchaotic signatures of negative maximum Lyapunov exponent
and fractal geometry are often difficult to observe, especially in
experimental data. However, scale-free power law scaling of a rich
frequency spectrum provides a more practical signature, which we
have recently discerned in golden stars [1]. Since this signature is
not well known outside the nonlinear dynamics community, we
here provide a heuristic derivation of it.

Consider a continuous signal x[t] with two prominent incom-
mensurate frequency components f; = 1/T; and f, = 1/T;. Strobe
the signal at the primary period T; and plot its values versus time
modulo the secondary period T, in the Poincaré section

{ta, o} = {nT1(mod T3), x[nT1]}, (1)

where n are integers. If a function x,, = S[t,,] represents the section,
is it smooth? Expand the function as a Fourier series

o0
S[t] = Z §mei2nmt/Tz’ (2)
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Fig. 2. In a schematic spectrum, m peaks (or bin heights) are higher than the mth
peak.

with derivatives

(o]
sl = Y Su(i2mm/Ty)*e /T2, 3)

m=—0o0

For smooth sections, expect the Fourier coefficients §m to decay
exponentially, so all the derivatives also decay (as the exponential
overwhelms any power). For nonsmooth sections, expect the
Fourier coefficients to decay slower, as a power law, so that some
derivatives diverge. Specifically, for large Fourier modes m, expect

_|a e”™?  smooth,
h= ‘Sm‘ ho {m‘”b, nonsmooth, (4)
where b > 0. Invert to get

_ —blog[h/ho], smooth,
N=m {(h/ho)_b, nonsmooth. (5)

Since an averaged spectrum decreases with mode number or
frequency, so that m Fourier coefficients are higher than the mth
coefficient, as in Fig. 2, reinterpret N = m to be the number
of spectral peaks higher than the threshold height h. Numerical
experiments indicate that this relation continues to hold for more
general, irregular or sparse spectra.

Eq. (5) power-law spectral distribution N ~ Noh~® associated
with nonsmooth Poincaré sections has been demonstrated in
mechanical [18] and electrical [19] experiments and appears
to characterize golden stars [1]. The experiments are typically
optimized by driving quasiperiodically at two frequencies that are
not only incommensurate, but are as incommensurate as possible,
so that their ratio is golden (as discussed in Section 4). The
mechanical experiment, for example, obtained good results and
power-law scaling by driving near - but not exactly at - the golden
ratio.

3. Stellar analysis

As an example of our stellar nonlinear analysis, consider the star
of our previous paper, KIC 5520878, whose normalized brightness
or flux Fy varies as in Fig. 3(a), where Kepler space telescope long
cadence data has been conservatively detrended and standardized
to zero mean and unit variance [1]. Although Kepler’s time series
are of unprecedented quality, they do contain both small and
large gaps. Consequently, to estimate the frequency content of the
time series, we do not use the Fast Fourier Transform algorithm,
which assumes equally spaced points. Rather, we use Least Squares
Spectral Analysis [20], effectively fitting sinusoids to the data, by
computing the Lomb-Scargle periodogram I:',%, and its square root,
as in Fig. 3(b).

The primary frequency f; and its overtones nf; create the repeti-
tive non-sinusoidal waveform, while the secondary frequency f, &
¢f1, a golden ratio higher, modulate the maxima and minima. The
spectrum is actually very rich (or very rough); it is not a discrete
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