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h i g h l i g h t s

• A phenomenological model has been derived in the case of elastic vibrating plates.
• Without damping, self-similar dynamics for forced and free turbulence are retrieved.
• In the framework of damped wave turbulence, self-similar universal solutions are given.
• An equation that links power spectra, damping law and injected power has been found.
• The agreement of the model with experiments and simulations is found to be good.
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a b s t r a c t

A phenomenological model describing the time-frequency dependence of the power spectrum of thin
plates vibrating in awave turbulence regime, is introduced. Themodel equation contains as basic solutions
the Rayleigh–Jeans equipartition of energy, as well as the Kolmogorov–Zakharov spectrum of wave
turbulence. In the Wave Turbulence Theory framework, the model is used to investigate the self-similar,
non-stationary solutions of forced and free turbulent vibrations. Frequency-dependent damping laws can
easily be accounted for. Their effects on the characteristics of the stationary spectra of turbulence are
then investigated. Thanks to this analysis, self-similar universal solutions are given, relating the power
spectrum to both the injected power and the damping law.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

TheWave (or Weak) Turbulence Theory (WTT) aims at describ-
ing the long-term behaviour of weakly nonlinear systems where
the nonlinearity controls the exchanges between scales [1–3]. Un-
der classical assumptions such as dispersivity, weak nonlinearities
and the existence of a transparency window in which the dynam-
ics is assumed to be conservative, a kinetic equation can be de-
duced for the slow dynamics of the spectral amplitude. In addition
to the Rayleigh–Jeans spectrum that corresponds to the equipar-
tition of the conserved quantity, here the energy, a broadband
Kolmogorov–Zakharov (KZ) spectrum of constant energy flux is
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predicted, by analogy with hydrodynamic turbulence [1,2]. Such
dynamics has been firstly studied for ocean (gravity) waves [4–6]
and since then in systems such as capillary waves [7,8], nonlinear
optics [9] or plasmas [10].

A wave turbulence spectrum for elastic vibrating plates has
been deduced theoretically and observed numerically in [11]. The
theoretical analysis considers the dynamics of a geometrically non-
linear thin vibrating plate in the framework of the Föppl–von Kár-
mán (FVK) equations. The WTT analysis leads to the prediction of
a direct cascade characterized by a KZ spectrum with constant en-
ergy flux. Soon after, two independent experiments performed on
thin elastic plates [12–14] did not recover the theoretically pre-
dicted and numerically observed spectra, questioning the valid-
ity of the underlying assumptions of WTT in the case of vibrating
plates. Recently, an experimental and numerical study considering
the effect of damping on the turbulent properties of thin vibrating
plates has clearly established that [15]:
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• In experiments, damping acts at all scales such that the assump-
tion of a transparency window, a domain in the wave number
spacewhere dissipation and injection can be neglected, is ques-
tionable.

• Modifying the damping alters the shape of the velocity power
spectra so that a direct comparison with the predicted spectra
is out of reach in experimental conditions.

• However, by including the experimentally measured damping
laws in the numerical simulations of the full dynamics (the FVK
equations), a good agreementwith the experiments is retrieved.
This suggests that the discrepancies between the experiments
and the WTT predictions are mainly due to damping.

These conclusions have been corroborated by a numerical
study where the damping was gradually modified, from the
experimentally measured law to a vanishing value in a given
frequency band [16], showing also how the spectra aremodified by
a small yet non-negligible values of damping found in real plates.

Accounting for dissipation within the WTT framework remains
challenging since the analytic calculations are based on the long
time asymptotic evolution of the weakly nonlinear Hamiltonian
dynamics. The injection and dissipation in this context can be
seen as boundary conditions imposed to the transparency win-
dow in the wave number space and to the best of our knowledge,
we do not know any analytical attempt to introduce dissipation
within the WTT. Another option would be to find an alternative
description of the dynamics of the power spectrum, where adding
dissipation appears more straightforward. The alternative can be
provided by using a phenomenological model describing the tem-
poral evolution of the power spectra, as first proposed by Leith for
hydrodynamic isotropic turbulence [17]. These models provide a
natural framework for investigating unsteady and self-similar dy-
namics in a variety of context [17–22]. They are generally derived
from ad-hoc assumptions, by constructing a model equation ad-
mitting as stationary solutions both the Rayleigh–Jeans equipar-
tition of energy and the KZ spectrum. This results in a nonlinear
diffusion equation in the wave number (k-space) or the frequency
(ω-space) domain, which mimics the energy transfer within the
modes. Thanks to this approach, ideal situations can be investi-
gated, as for instance the injection of a constant flux of energy at
small scales and its diffusion, or the evolution of an initial condi-
tion in absence of dissipation. Self-similar dynamics are generally
observed in these cases.

The goal of this paper is thus to derive and investigate such a
phenomenologicalmodel in the case of elastic vibrating plates. The
model equation should contain both Rayleigh–Jeans and KZ solu-
tions. Injection and dissipation terms are then introduced in order
to studymore particularly the effects of the damping. Twomain re-
sults are obtained. First, self-similar dynamics for forced and iso-
lated turbulence in the absence of dissipation are retrieved. In a
second part, the effect of the damping on the cascading turbulent
spectrum is investigated, exhibiting a self-similar solution relat-
ing the power spectrum to the injected power and the damping
law.

2. Model equation

The application of thewave turbulence theory to the Föppl–von
Kármán thin plate equations has been performed in [11] (see Ap-
pendix A for the dimensional and non-dimensional forms of these
equations. Note that for this section, all values are dimensionless).
Without recalling the details of the derivation and the complex
form of the kinetic equation, one only needs to remind that the two
stationary solutions of the kinetic equation, written here under the
form of a density of energy Eω , function of the frequency ω, are:

• The Rayleigh–Jeans equilibrium solution, where the energy Eω

is equally parted along all the available modes. Consequently,
the density of energy Eω is a constant that is denoted as C:

Eω = C . (1)

• The Kolmogorov–Zakharov solution, for which an energy flux ε
is transferred along the cascade until its dissipation nearω⋆, the
cut-off frequency of the spectrum. Referring to [11], the energy
spectrum in this case is such that
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where A is a constant. The specific form of this solution, con-
sisting in a logarithmic correction of the Rayleigh–Jeans spec-
trum, comes from a degeneracy of the equilibrium solution in a
similarmanner as for the nonlinear Schrödinger equation [9]. In
fact, this logarithmic correction is obtained using a perturbative
expansion and is valid far from ω⋆. Therefore, although Eq. (2)
exhibits a steep cut-off because of the non-existence of
the mathematical solution above ω⋆ (negative energy), ex-
periments and numerical simulations do not show such a
behaviour, and the spectrum decreases more smoothly as ω in-
creases in the vicinity of ω⋆ [15,23,24].

The phenomenological model is directly deduced from these
stationary solutions of the energy spectrum. Let us consider the
following diffusion-like equation in the ω-space for the energy
spectrum Eω(ω, t):

∂tEω = ∂ω(ωE2
ω∂ωEω), (3)

where ∂t and ∂ω refer respectively for the partial derivatives with
respect to time and angular frequency. The energy flux associated
to this equation reads straightforwardly

ε = −ωE2
ω∂ωEω. (4)

Thanks to the identification of the energy flux ε, the proportionality
constant A of Eq. (2) is then uniquely defined as A = 3

1
3 . Hence, for

the phenomenological model the KZ solution finally reads:
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ω = (3ε)
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The model equation, Eq. (3), is constructed so that Eqs. (1) and
(2) are stationary solutions (∂tEω = 0). The Rayleigh–Jeans equi-
librium is a trivial solution to Eq. (3) in the stationary case since
∂ωEω = 0. For the KZ spectrum, one has just to verify, by deriv-
ing Eq. (2) with respect to ω, that ωE2

ω∂ωEω is constant with re-
spect to ω. Because this model equation has been deduced in the
dimensionless framework, only a numerical prefactor, which could
be easily absorbed by a rescaling of the time, should be present on
the right-hand side of Eq. (3).

Thephenomenological equation is nothing else than anonlinear
diffusion equation in the frequency space, in the spirit of the
Richardson cascade view of turbulent processes [25]. However, a
direct derivation of this equation starting from the kinetic equation
cannot be done formally, and only qualitative arguments can be
deduced from a local approach on the kinetic equation [1] (Section
4.3). In fact, attempts to deduce such simplified Fokker–Planck
equation from the weak turbulence equations go back to the
pioneering works done for ocean waves by Hasselmann [26–28],
although additional approximations were needed to deduce such
local models in frequency.

Nonlinear diffusion equations can exhibit important differences
as compared to the linear diffusion one. In particular, singularity
can be formed by the nonlinear dynamics and compact support
solutions can also be present, by opposition to the linear diffusion
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