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Kinematic variational principle for motion of vortex rings
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Abstract

We show how the ideas of topology and variational principle, opened up by Euler, facilitate the calculation of motion of vortex rings.
Kelvin–Benjamin’s principle, as generalised to three dimensions, states that a steady distribution of vorticity, relative to a moving frame, is
the state that maximizes the total kinetic energy, under the constraint of constant hydrodynamic impulse, on an iso-vortical sheet. By adapting this
principle, combined with an asymptotic solution of the Euler equations, we make an extension of Fraenkel–Saffman’s formula for the translation
velocity of an axisymmetric vortex ring to third order in a small parameter, the ratio of the core radius to the ring radius. Saffman’s formula for a
viscous vortex ring is also extended to third order.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Euler opened up the field of topology when he presented
the solution to the Königsberg bridge problem in 1735 [1]. As
“geometry of position” in the title signifies, Euler envisaged
a new type of geometric problem in which distance is not
relevant. In 1750, he discovered the polyhedral theorem on the
Euler characteristic, a summation of alternately signed numbers
of vertices, edges and faces of a polyhedron [2]. This theorem
stands as the cornerstone of topology. Almost at the same time,
the Euler equations for fluid flows were born.

Euler’s 1757 paper [3] certainly overcame the limitation
to irrotational velocity field, posed by Bernoulli, and
accommodated vorticity. However a century passed before
Helmholtz discovered the key to the heart of vortex motion
that the vortex lines are frozen into the fluid [4]. Helmholtz’
theorem implied that link and knot types of vortex lines remain
unchanged throughout the flow evolution. This implication,
along with the invariance of circulation, sparked, in Scotland,
the construction of atom models by knotted vortex tubes.
Inspired by the vortex atom theory, Tait attempted classification

∗ Corresponding author. Tel.: +81 92 642 2762; fax: +81 92 642 2779.
E-mail address: yasuhide@math.kyushu-u.ac.jp (Y. Fukumoto).

of knot and link types [5]. It took another century for the
helicity to be discovered [6–9]. This topological invariant is
tied with linkage and knottedness of vortex filaments [9]. More
precisely, the helicity embodies the Cǎlugǎreanu invariant [10],
a summation of the writhe and the twist, of a twisted flux
tube [11].

The study of the motion of vortex rings started simultane-
ously with the birth of the field of vortex dynamics [4]. Ex-
tending Helmholtz’ analysis, Kelvin obtained the formula for
velocity of an axisymmetric vortex ring, steadily translating in
an inviscid incompressible fluid of infinite extent, for a distri-
bution of vorticity, in the core, proportional to the distance from
the axis of symmetry. The assumption is made that the ring is
very thin:

ε = σ/R0 � 1, (1)

where σ is the core radius and R0 is the ring radius. The formula
allowing for an arbitrary distribution of vorticity was found by
Fraenkel [12] and Saffman [13] (see also Ref. [14]) as
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where Γ is the circulation and
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, (3)

with v0(r) being the local velocity of circulatory motion of the
fluid around the toroidal center circle, as a function only of the
local distance r from the circle. In the absence of viscosity,
v0(r) and therefore the local vorticity field may be arbitrary
functions of r .

Viscosity acts to diffuse vorticity, and the motion ceases to
be steady. For a vortex ring with its toroidal vorticity ζ(r, t) ‘δ-
function’ concentrated on the circle of radius R0, at a virtual
instant,

ζ(r, 0) = Γ δ(ρ − R0)δ(z − Z) at t = 0, (4)

with r2
= (ρ − R0)

2
+ (z − Z)2, it suffices to substitute, into

(3), the Oseen diffusing vortex

ζ0 =
Γ

4πνt
e−r2/4νt , v0 =

Γ
2πr

(
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)
, (5)

where ν is the kinematic viscosity and t is the time measured
from the instant at which the core is infinitely thin. With this
form, (2) supplemented by (3) becomes
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, (6)

where γ = 0.57721566 · · · is Euler’s constant. Comparison
with the result of numerical simulation of the axisymmetric
Navier–Stokes equations [15] illustrates that validity of
Saffman’s formula (6) is limited to very small times (νt/R2

0 �

1) [16].
Vortex rings observed in nature are not necessarily thin.

Kelvin’s formula is an asymptotic solution to O(ε) for
vorticity linear in the distance from the symmetric axis.
Dyson [17] accomplished its extension to O(ε3) [18]. For this
distribution, evidence is available that Dyson’s formula fits
rather well with the speed of Hill’s spherical vortex, the fat
limit of Fraenkel–Norbury’s family of vortex rings [19]. This
unexpected agreement stimulates us to pursue a higher-order
correction to (2).

The method of matched asymptotic expansions has been
previously developed for a systematic treatment of motion of
slender vortex tubes [14,20], and was extended to second order
in ε [21]. Derivation of the correction to Fraenkel–Saffman’s
formula (2) requests us to enter into the third order. A flood
of nonlinear terms of a higher order in the Navier–Stokes
equations makes our mathematical handling out of control.
It was shown that the radius of the circle of vorticity
centroid grows linearly in time due to the action of vorticity
[22], but reduction of the expression for the speed of a
vortex ring remains yet to be attained. The method of
Lamb–Saffman–Rott–Cantwell [23,13,24] provides an efficient
means.

We show how topological ideas help to bring in a further
simplification. It is well known that a stationary configuration
of vorticity, embedded in an inviscid incompressible fluid, is

realizable as an extremal of energy on an iso-vortical sheet
[25–27]. An iso-vortical sheet comprises volume-preserving
diffeomorphisms, or smooth maps of fluid particles, with
vorticity frozen into the fluid. For a moving state, this
conditional variational principle should be augmented by a
constraint. Benjamin [28] put forward a variational principle
that an axisymmetric vortex ring moving steadily in an inviscid
incompressible fluid is realizable as the maximum state of
the kinetic energy H on an iso-vortical sheet, subject to the
constraint of constant hydrodynamic impulse

P =
1
2

∫∫∫
x × ωdV . (7)

When translated into three dimensions, Kelvin–Benjamin’s
principle reads

δH − U · δP = 0, (8)

where the velocity U of the region plays the role of the
Lagrangian multipliers.

An iso-vortical sheet is infinite dimensional. A family of
solutions of the Euler equations include several parameters. By
posing some relations on these parameters, we can maintain the
solutions on a single iso-vortical sheet, and, when restricted to
this family, the dimension of an iso-vortical sheet is reduced
to finite. Thus the traveling speed of a vortex ring may be
calculable through (8). This is indeed the case for the first-order
velocity formula as listed in the book [29]. The principle (8) has
a wider applicability as exemplified by a vortex ring governed
by the Gross–Pitaevskii equation [30]. In this paper, we adapt
this variational principle to deduce the O(ε3) correction to the
traveling speed. At large Reynolds numbers, the viscosity plays
a secondary role only of selecting vorticity profile, and the
inviscid formula is applicable to give the correction term to
Saffman’s formula (6).

We begin with the general variational formulation in three
dimensions (Section 2). After a statement of asymptotic
expansions of the flow field, the kinetic energy and the impulse
(Section 3), we recall the outer and inner solutions [22] in
Sections 4 and 5 respectively. Thereafter, we calculate, in
Section 6, the energy and the impulse to O(ε2) and present, in
Section 7, a recipe for implementing (8) to produce the O(ε3)

correction to Fraenkel–Saffman’s formula (2) and Saffman’s
formula (6) for the traveling speed of vortex rings. It is highly
probable that a vortex ring obeying the Euler equations is a
maximum-energy state [28,31]. The upper bound of energy,
if available, guarantees the existence of this extremal, and is
furnished by a topological invariant [32]. Appendix gives a
concise description for viewing this invariant as a variant of the
helicity [33].

2. Variational principle

Roberts [34] proved the above principle for an axisymmetric
vortex ring steadily translating in an inviscid fluid. Below, we
extend this principle to three dimensions to gain an insight into
the variational structure.
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