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h i g h l i g h t s

• Cellular non-deterministic automata (CNDA) extend the concept of cellular automata.
• CNDA are defined in the spirit of non-deterministic automata theory.
• The dynamical behavior of a CNDA can be analyzed with deterministic superautomata.
• A CNDA can be embedded in a deterministic cellular automaton.
• CNDA can be used to approximate dynamics of certain partial differential equations.
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a b s t r a c t

Wedefine cellular non-deterministic automata (CNDA) in the spirit of non-deterministic automata theory.
They are different from the well-known stochastic automata. We propose the concept of deterministic
superautomata to analyze the dynamical behavior of a CNDA and show especially that a CNDA can be
embedded in a deterministic cellular automaton. As an application we discuss a connection between
certain partial differential equations and CNDA.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

On the one hand, spatial dynamical processes are mostly for-
mulated as partial differential equations (PDE). As it is often diffi-
cult to obtain satisfactory analytical insight in practice, numerical
schemes are applied. But despite the power of and recent progress
in numerics, its practical use often encounters efficiency problems.

On the other hand, the theory of deterministic cellular automata
(CA) evolved as an efficiently implementable description of spatial
dynamical processes [1–3]. They are discrete in time, space and
state space, and consist of spatially shift-invariant and local evo-
lution rules [4,5]. Stochastic versions have also been introduced
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[6,7], which are similar to particle systems [8,9]. Well-known ap-
plications range from Conway’s Game of Life [10] over excitable
media [11] or biological pattern formation [6] to fluid dynamics
through lattice–gas cellular automata and lattice Boltzmannmeth-
ods [12]. Moreover, agent models on the basis of CA are very pop-
ular with applications in city [13] or society [14] modeling and
crowd control [15].

Although also CA models carry certain drawback, it thus seems
promising to develop a simplified description of a PDE in the dis-
crete setup of CA. The goal is to derive an easy system that can
be handled, simulated and – up to a certain degree – analyzed
in a simpler way than the original PDE. Some approaches have
been developed for the transition from state-continuous to state-
discrete systems recently. Time-continuous dynamical systems on
continuous state space can be studied by symbolic dynamics [16]
or approximated by time-discrete Markov chains on finite state
space [17]. This technique has led to the powerful tools of set ori-
ented numerics [18,19], which is especially useful to study ergodic
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Fig. 1. (a) Space, time and state are discretized to describe the dynamics of a PDE by the dynamics of a CNDA. In many cases it is hard to determine the smallest possible
CNDA and one ends up with a bigger CNDA which already carries less information. (b) A CNDA is covered by its SS of decreasing precision, see Section 4 for details.

theory, asymptotic dynamics and optimal control [20,21]. Alterna-
tive discretizations use information about special behavior of the
continuous-state system [22] or have been discussed in the con-
text of interval arithmetic [23] and for probabilistic graphicalmod-
els with continuous states [24]. People have even argued in favor
of a reformulation of physical laws in a discrete language [25,26].
Approaches for the specific transition from PDE to CA include ul-
tradiscretization [27,28] and a probabilistic method [29]. We aim
to contribute to this topic from another angle.

The idea is to dismiss information stepwise, see Fig. 1(a):
first we use a method of line [30] to go from a PDE on R to a
countable system of ordinary differential equations (ODEs); we
replace R by Z by space discretization. Next we discretize the
coupled ODEs in time and state by a variant of the set oriented
methods for dynamical systems. The outcome is interpreted as a
cellular non-deterministic automaton (CNDA) in the spirit of non-
deterministic automata theory [31]: the transition of a state in one
site is not deterministically determined by a configuration in the
neighborhood, we only know a set of possible next states. This is a
consequence of the second step of simplification and information
reduction. In [32] we add transition probabilities to the possible
image states and thus develop a method for uncertainty propa-
gation. In contrast, the focus of this work is on the basic non-
deterministic aspect in the context of CA theory.

We suggest to analyze suchCNDAwith supersystems (SS), espe-
cially by embedding them in or covering them with deterministic
cellular superautomata (SA), see Fig. 1(b). This allows to approxi-
mate their dynamical behavior with the standard theory of CA at
the cost of losing – in a controlled way – further information. One
of these SS, the pattern SA, can be extended to the probabilistic
setup in [32]. However, the work at hand is more general and also
introduces and categorizes other approximation ideas. It depends
very much on the system and the details of the whole procedure
whether the SS reveals the essential features of the initial PDE. The
method is chosen in such a way that it is always possible to con-
struct a region covering the solution of the ODE. However, if the in-
formation loss is too high, the outcome may be trivial in the sense
that it does not rule outmost dynamical patterns but accept almost
all patterns as possible structures.

The paper is structured as follows. In Section 2 we review
some basic concepts of the theory of CA and dynamical systems to
settle a notation, before we abstractly introduce and discuss CNDA
in Section 3. Section 4 is concerned with the general analysis of
CNDA with SS and SA. Then we show in detail in Section 5 how
a CNDA may be constructed from a PDE as sketched above. We
use the Fisher–KPP equation [33], which is central in the theory
of reaction–diffusion processes [34], as a prototypical example in
order to obtain some practical insight into the developed theory.
Finally we conclude our results in Section 6.

2. Notation: Cellular automata and dynamical systems

In this section we review some basic concepts from cellular
automata (CA) and dynamical systems theory to settle a notation.

2.1. Cellular automata

Let (G, ·) be a finitely generated group with generators
{τ1, . . . , τn}, and E a finite set. G can be interpreted as the set of
vertices of an associated graph, the Cayley graph, and is therefore
in our context called a grid with grid sites g ∈ G. We write EH for
the set of all functions from H ⊆ G to E and eH for the function
which is constantly e ∈ E on H . When defining a ϕ ∈ EZ explicitly
we use the notational convention that the first written element of
E after the dots always is the one at site j = 0. A shift operator is a
mapping σg : EG

→ EG, σg(ϕ)(h) = ϕ(g · h) for g, h ∈ G.

Definition 2.1. (i) A (deterministic) cellular automaton (CA) is a
tuple (G,U, E, f0) with G and E as above and U = {0, τ±1

i |

i = 1, . . . , n} the neighborhood of the unit element 0 ∈ G.
f0 : EU

→ E is a local function that induces the global function
f : EG

→ EG, ϕ → f (ϕ)with

f (ϕ)(g) = f0(σg(ϕ)|U)

for g ∈ G. The (deterministic) trajectory starting with ϕ0 ∈ EG

is given by the sequence (ϕn)n∈N, where ϕn = f (ϕn−1) for
n ∈ N+.

(ii) If there is exactly one marked element 0 ∈ E with f0(0U) = 0,
the CA is said to have a resting state.

(iii) For finite H ⊂ G, h ∈ EH is said to be a Garden of Eden
pattern, if there are no states ϕ,ψ ∈ EG with ϕ|H = h and
ϕ = f (ψ) [35].

Understanding the restriction ϕ|g·U as a function with domain
U , it holds that σg(ϕ)|U = ϕ(g · U) = ϕ|g·U and therefore
f0(σg(ϕ)|U) = f0(ϕ|g·U).

Although many definitions and results may be extended to
more general groups, we restrict ourselves mostly to the group
(Z,+) in the following. It will turn out that this is sufficient to
apply our ideas to the simulation of partial differential equations
in one spatial dimension. We call |U| = m + n + 1 the length of a
set U = {−m, . . . , n} such as the neighborhood, where m, n ∈ N.
In case of E carrying an order ≤, ϕ ∈ EZ is called monotonic if
ϕ(i) ≤ ϕ(j) for all i ≤ j or if ϕ(i) ≥ ϕ(j) for all i ≤ j, where
i, j ∈ Z.

Definition 2.2. Let ϕ,ψ ∈ EZ. The Cantor metric dC is given by
dC (ϕ, ψ) = 0 if ϕ = ψ and dC (ϕ, ψ) =

1
1+i otherwise, where

i is the least non-negative integer such that either ϕ(i) ≠ ψ(i) or
ϕ(−i) ≠ ψ(−i). The induced topology is called theCantor topology.
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