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a b s t r a c t

Usually, whether to take vaccination or not is a voluntary decision, which is determined by many factors,
from societal factors (such as religious belief and human rights) to individual preferences (including
psychology and altruism). Facing the outbreaks of infectious diseases, different people often have different
estimations on the risk of infectious diseases. So, some persons are willing to vaccinate, but other persons
are willing to take risks. In this paper, we establish two different risk assessment systems using the
technique of dynamic programming, and then compare the effects of the two different systems on the
prevention of diseases on complex networks. One is that the perceived probability of being infected for
each individual is the same (uniform case). The other is that the perceived probability of being infected is
positively correlated to individual degrees (preferential case). We show that these two risk assessment
systems can yield completely different results, such as, the effectiveness of controlling diseases, the time
evolution of the number of infections, and so on.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the outbreaks of Severe Acute Respiratory Syndrome
(SARS) [1,2], Avian influenza [3,4], and Swine influenza (H1N1)
[5,6] have posed great threats to the human population. Modeling
the spread of epidemics is an important topic in understanding the
impact of diseases and designing effective control strategies, and
has therefore become a task of utmost importance and attracted a
revival of interest from the scientific community. Classical mathe-
matical approaches make simplifying assumptions about the pat-
terns of disease-causing interactions among hosts. In particular,
homogeneous-mixing models assume that all hosts have identi-
cal rates of disease-causing contacts [7]. However, many infectious
diseases are diffused from individual to individual following a het-
erogeneous contact pattern between them. So the transmission of
diseases in the human population can be conveniently abstracted
as diseases propagate on complex networks with different struc-
tures. Examples include the web of human sexual contacts [8], the
distribution of avian influenza [4], and so on. Therefore, the dy-
namics of epidemics on complex networks [9–18] and a wide va-
riety of immunization or vaccination strategies, including targeted
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immunization [19], acquaintance immunization [20], ring immu-
nization [21], etc., are investigated under the framework of com-
plex networks.

Though the above immunization strategies have proven to be
efficient in controlling the diseases under certain conditions, an
often neglected factor is that many vaccinations are voluntary
rather thanmandatory (for example influenza vaccination [22] and
smallpox in some countries [23]). Under a voluntary vaccination
mechanism, individuals typically aim at increasing their own
interests, so they will balance the cost of vaccination against
the risks of infection to decide whether to vaccinate or not in
the presence of infection. However, the decision on vaccination
is highly dependent on the individuals’ perceived risk of the
diseases, which is in turn determined by many factors, such as
the prevalence of diseases, the transmission rate of diseases, the
duration of diseases, and so on [22–29]. Thus, in this paper,
the dynamics of infectious diseases on complex networks under
the voluntary vaccination mechanism is investigated. Meanwhile,
the effects of these factors on the perceived risk of diseases are
established by a dynamic programming method in this paper.

Furthermore, to compare the effects of risk estimation systems
on controlling the spread of epidemics on complex networks, we
study two different cases: for the first case, we assume that the
perceived risk of being infected for each susceptible individual
on network is the same (uniform case), that is, each susceptible
individual estimates the perceived risk of infection only depending
on the prevalence of infection, not on its own degree/immediate
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neighbors at each time step. In the second case, we assume
individuals are more rational, so the more links/neighbors they
have, the higher the probability of being infected. As a result, the
perceived risk of infection is not only proportional to the prevalence
of the disease but also on the individual’s degree/immediate
neighbors (preferential case). Interestingly, even though there
is only a small discrepancy between the two cases, completely
different results are observed. For example, for the uniform case,
the effect of voluntary vaccination on a scale-free network is worse
than on random network. For the preferential case, however, the
opposite occurs.

2. Model

In this paper we adopt the SIS epidemiological model to
investigate the role of voluntary vaccination. In the SIS model,
at each time step, each susceptible (S) node is infected with
transmission rate β if it is connected to an infected (I) node.
Meanwhile, the infected node recovers and returns to the
susceptible state again with probability µ.

When facing an impending infectious disease, each susceptible
individual has to decide whether to vaccinate or not by weighing
the perceived risk of infection against the cost of vaccination. We
assume that the perceived risk function for susceptible individuals
comes from several aspects: the perceived prevalence of the
disease estimated by individuals themselves, the transmission rate
β , and the duration time of the disease τ = 1/µ. Furthermore,
we assume that individuals are forward-looking, and they discount
future wealth by a discount factor δ ∈ [0, 1). The discount factor
represents how much weight an individual places on the future
when deciding what action to take [30]. (The concept of such
a discount is common in economic and accounting fields when
computing the net present value of an asset. In general, the idea
is that value at some distant time in the future has less utility than
an equivalent value now, i.e., a present value u becomes uδt after t
time periods.)

Suppose that each individual has the same initial wealth u, and
if the individual is infected then his/her wealth is u− c , here c > 0
indicates the cost of infection. We assume that each individual i
estimates the prevalence of disease in a uniform way

θi = riI(t), (1)

where ri is uniform distribution in [0, 1], describing the imperfect
information about the disease and the diversity of individuals,
and I(t) is the proportion/density of infection among the total
population.

Denote f Ur (f Pr ) and f Uv (f Pv ) as the perceived risk function and cost
of vaccination for the uniformcase (preferential case), respectively.
To reflect the optimal behavior of susceptible individuals, in this
work we use the technique of dynamic programming [31] (see
a brief introduction in the Appendix) to deduce the perceived
risk functions f Uv for the uniform case and f Pv for the preferential
case.

Let Vi(S) and Vi(I) be the value functions of individual
i evaluated in the susceptible state and the infected state,
respectively. So for the uniform case, Vi(S) satisfies the following
Bellman equation [30,32]

Vi(S) = max{u − f Uv + δVi(S), u

+ δ[(1 − βθi)Vi(S) + βθiVi(I)]}. (2)

The first term and second term in the brackets of Eq. (2) are the
individual i’s benefit from vaccination and from non-vaccination,
respectively. Moreover, (1 − βθi)Vi(S) is the benefit of i escaping
from infection though it takes risky behavior, and βθiVi(I) is the
benefit of being infected because of the risky behavior. The value
function of i evaluated in infected state Vi(I) is given as

Vi(I) =

τ−1−
t=0

δt(u − c) + δτVi(S)

= (u − c)
1 − δτ

1 − δ
+ δτVi(S). (3)

To obtain the maximum value of Vi(S), we first establish the
following two equations from Eqs. (2) and (3)

Vi(S) = u − f Uv + δVi(S), (a)

Vi(S) = u + δ

[
(1 − βθi)Vi(S)

+βθi


(u − c)

1 − δτ

1 − δ
+ δτVi(S)

]
. (b)

(4)

Solving Eq. (4)(a) and (b), one has
Vi(S) =

u − f Uv
1 − δ

, (a)

Vi(S) =
u + δβθi(1 − δτ )(u − c)

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)
. (b)

(5)

Without loss of generality, by setting u = 0 and taking the
maximum value of Vi(S) in Eq. (5)(a) and (b), we have

Vi(S) = max


−f Uv
1 − δ

,
−δβθi(1 − δτ )c

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)


. (6)

From Eq. (6), we know that if

−f Uv
1 − δ

>
−δβθi(1 − δτ )c

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)

⇒ f Uv < f Ur ,
δβθi(1 − δτ )c

1 − δ(1 − βθi) − βθiδτ+1
, (7)

then vaccination is the preferred choice; otherwise, if f Uv ≥ f Ur ,
non-vaccination is a better choice.

Remark 1. To facilitate the analysis, we assume that the efficiency
of vaccination is 100% during the period of the vaccine’s validity.

For the preferential case, we assume that individuals are more
rational than the uniform case, i.e., susceptible individuals know
that themore neighbors they have the greater their probabilities of
being infected. As a result, the degree of each susceptible individual
is considered in the preferential case. In this case, individual i’s
value function Vi(S) satisfies

Vi(S) = max{u − f Pv + δVi(S), u + δ[(1 − βkiθi)Vi(S)

+ βkiθiVi(I)]}, (8)

here ki is the degree of node i, other parameters are the same as the
uniform case.

Similar to the uniform case, for the preferential case, if

f Pv < f Pr ,
δβθiki(1 − δτ )c

1 − δ(1 − βθiki) − βθikiδτ+1
(9)

susceptible individuals are willing to be vaccinated; otherwise,
f Pv ≥ f Pr susceptible individuals prefer to take risks.

3. Main results

In this section, we use two different risk functions—Eq. (7) for
the uniformcase and Eq. (9) for the preferential case—to study their
different effects on the dynamics of epidemics. Our main results
are based on the scale-free BA network proposed by Barabási and
Albert (BA) in 1999 [33].We also use the randomnetwork [34] here
as a comparison, when the effects of structure on the dynamics
of epidemic are considered. Both of them have the same size
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