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a b s t r a c t

Media with a negative Kerr index (n2) offer an intriguing possibility to self-compress ultrashort laser
pulses without the risk of spatial wave collapse. However, in the relevant frequency regions, the
negative nonlinearity turns out to be highly dispersive as well. Here, we study the influence of nonlinear
dispersion on the pulse self-compression in a defocusing xenon gas. Purely temporal (1+1)-dimensional
investigations reveal and fully spatio-temporal simulations confirm that a temporal shift of high intensity
zones of the compressed pulse due to the nonlinear dispersion is the main effect on the modulational
instability (MI) mediated compression mechanism. In the special case of vanishing n2 for the center
frequency, pulse compression leading to the ejection of a soliton is examined, which cannot be explained
by MI.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The common property of laser pulse compression schemes
is the utilization of nonlinear effects the pulse undergoes upon
propagation. The omnipresent idea hereby is to broaden the pulse
spectrum and ensure a flat spectral phase at the same time.
Among others, such as frequency conversion in filaments [1] or
cascading quadratic nonlinearities [2–4], the spectral broadening
ability of self-phase modulation (SPM) is often exploited in the
guided configuration (waveguides, fibers). The resulting phase can
be accounted for by applying some post-compressionmechanisms
such as Bragg gratings and chirped mirrors or, even more
convenient, by a counteracting term on the phase contributions,
that is in our case the group velocity dispersion (GVD). The
simplest model that captures both processes is expressed by
the famous nonlinear Schrödinger (NLS) equation for the slowly
varying envelope of an optical pulse A(z, t) : ∂zA = −ik2Att/2 +

iγ |A|
2A. Here, k2 = ∂2k(ω)/∂ω2

|ω=ω0 is the GVD coefficient at
center frequency ω0 and γ = n2ω0/c is the Kerr coefficient with
index n2 ∝ χ (3) defined by the third order susceptibility tensor
χ (3). The standard case described above would be anomalous
GVD (k2 < 0) counteracting on positive Kerr response (γ >
0), since a negative second derivative of the wave number k2 is
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more common than a negative γ . Trying to transfer this ’’solitary
compression mechanism’’ to the unguided bulk setup gives rise
to problems due to self-focusing and subsequent collapse of the
beam in the transverse spatial directions. Resolving this problem
and still sticking to the ’’solitary compression’’ (phase cancelation
due to different signs of GVD k2 and SPM γ ) means to ensure a
negative γ . Indeed, negative values for the Kerr response can be
found, e.g., in the UV near two photon resonances in Xe (Ref. [5]).
However, the strong dispersion of the nonlinearity near these
resonances questions the compression mechanism which is based
on a constant nonlinearity. Nevertheless, it was shown recently [6]
and will be elucidated in more detail in this work, that the basic
compression mechanism survives these obstacles. Moreover, we
will present an alternative scenario where pulse compression is
actually caused by the nonlinear dispersion, while the Kerr index
n2 approaches zero at center wavelength.

The paper is organized as follows. In Section 2, we give a
short derivation of our wave equation, followed by a discussion
of the temporal dynamics in a (1 + 1)-dimensional configuration
in Section 3. Finally, in Section 4, results for the (3 + 1)-
dimensional setup with radial symmetry are presented and
discussed. Conclusions are drawn in the last section.

2. Derivation of the governing equation

2.1. From Maxwell’s to wave equations

The propagation of light through a (nonlinear) optical medium
is described by the macroscopic Maxwell’s equations. We assume
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the absence of free charges ρf = 0 and free currents J⃗f = 0, a
nonmagneticmedium B⃗ = µ0H⃗ and thematerial to be nonlinear in
the sense that D⃗ = ϵ0E⃗+P⃗ . It is common to express the polarization
P⃗ in a power series in E⃗: P⃗ = P⃗ (1)

+ P⃗ (3)
+ P⃗ (5)

+ · · · , P⃗ (j)
∼ E⃗ j,

where we already accounted for the vanishing of contributions of
even power in E⃗ because we are dealing with centrosymmetric
media. In this work, we keep only terms up to third order and refer
to P⃗ (1)

= P⃗L as the linear polarization and to P⃗ (3)
= P⃗NL as the

nonlinear part. Putting all together, we get a wave equation in a
form that is often used as starting point for further calculations

∇
2E⃗ = µ0ϵ0

∂2E⃗
∂t2

+ µ0
∂2P⃗L
∂t2

+ µ0
∂2P⃗NL
∂t2

+ ∇(∇ · E⃗). (1)

For small polarization |P⃗| ≪ |ϵ0E⃗|, ∇⃗ · E⃗ is negligible. Furthermore,
we restrict our analysis to linearly polarized light and disregard
the tensor nature of the material response. Together with the
paraxiality assumption, we can omit vector arrows and treat a
scalar equation for the dominating field component. In Fourier
space, the linear polarization can be expressed as P̃L(ω) =

ϵ0χ
(1)(ω)Ẽ(ω) and after introducing the wave number k(ω) =

1 + χ (1)(ω)ω/c we obtain the wave equation in Fourier space

∇
2Ẽ + k2(ω)Ẽ = −ω2µ0P̃NL. (2)

2.2. Forward propagating equation for the complex field

In this work, we focus on the description of forward propagat-
ing waves only, since backscattered waves as well as the coupling
between both directions are usually weak for our beam configu-
rations [7]. We assume the field to propagate mainly along the
z ≥ 0 direction and therefore decompose it into forward propa-
gating plane waves with wave numbers k(ω) and the envelope Ã

E(x, y, z, t) =

∫
dωÃ(x, y, z, ω)ei[k(ω)z−ωt]. (3)

Distinction of the directions by ∇
2

= ∇
2
⊥

+ ∂2
z allows us to neglect

the fast varying backward traveling part ofAby skipping terms∼∂2
z

as long as the slowly varying envelope condition |∂2
z | ≪ |2ik(ω)∂z |

holds for the forward propagating part. Then, in Fourier space the
so-called forward Maxwell equation [8] emerges naturally

∂z Ã =
i

2k(ω)
∇

2
⊥
Ã + ik(ω)Ã +

iµ0ω
2

2k(ω)
P̃NL. (4)

Eq. (4) is in principle valid in the whole spectral domain. However,
in this work, our radiation is limited to a finite frequency window
around the laser operating frequency ω0. Hence, it is useful to
Taylorize the dispersion relation

k(ω) = k0 +
k1
1!

ω̄ +
k2
2!

ω̄2
+ · · · , (5)

with kj = ∂ jk(ω)/∂ωj
|ω=ω0 and ω̄ = ω − ω0. Moreover, for

convenience in the numerics, we split fast oscillations in z and go
over to a co-moving time frame, defined by t → t + k1z. In Fourier
space, this leads to the introduction of the (normalized) slowly
varying complex envelope

Ẽ(ω̄) = Θ(ω̄ + ω0)
1

√
s
Ẽ(ω̄ + ω0)e−i(k0+k1ω̄)z, s =

1
2n0ϵ0c

, (6)

with |E |
2

= I being the laser intensity, Θ(x) the usual Heaviside
function, and n0 = k0c/ω0.

2.3. Including the nonlinearity

As for the linear polarization, the tensor nature of the
nonlinear response function χ (3) is neglected. Furthermore,

we are only interested in contributions having approximately
the same frequency ω0 as our initial pulse and therefore omit
terms responsible for higher order harmonics generation. Hence,
the resulting expression for a dispersive third order nonlinear
polarization in Fourier domain is

P̃NL(ω) = ϵ0s3/2
∫∫

dω1dω2χ
(3)(−ω; ω − ω1 − ω2, ω2, ω1)

× 3Ẽ(ω̄1)Ẽ(ω̄2)Ẽ
∗(ω̄1 + ω̄2 − ω̄)ei(k0+k1ω̄)z, (7)

where * means complex conjugate. With this expression, we can
finally write down the propagation equation for the slowly varying
complex envelope

∂z Ẽ =
i

2k(ω)
∇

2
⊥
Ẽ + i[k(ω) − k0 − k1ω̄]Ẽ

+
3iω2s

2k(ω)c2

∫∫
dω1dω2χ

(3)(−ω; ω − ω1 − ω2, ω2, ω1)

× Ẽ(ω̄1)Ẽ(ω̄2)Ẽ
∗(ω̄1 + ω̄2 − ω̄). (8)

In the following analysis, we take the linear dispersion for Xe
from Ref. [9] and the nonlinear dispersion χ (3) is given in Ref. [10].

3. (1 + 1)-dimensional setup

In a first approach we want to investigate purely temporal
influence of the dispersive nonlinearity on pulse dynamics, thus
skipping the transverse spatial derivatives (∇2

⊥
) in Eq. (8). Even if

the numerical solution of this equation is straightforward, it does
not elucidate the underlyingmechanisms for compression. In order
to get some deeper insight, we include subsequently increasing
orders of nonlinear dispersion, originating from a Taylor expansion
around the central frequency ω0:

χ (3)(−ω; ω − ω1 − ω2, ω2, ω1)

= χ
(3)
0 + χ

(3)
1 ω̄1 + χ

(3)
2 ω̄2 + χ

(3)
3 ω̄ + · · · , (9)

where ω̄j = ωj − ω0 and

χ
(3)
0 = χ (3)(−ω0; −ω0, ω0, ω0),

χ
(3)
1,2 = ∂ω1,2χ

(3)(−ω; ω − ω1 − ω2, ω2, ω1)|ω1=ω2=ω=ω0 ,

χ
(3)
3 = ∂ωχ (3)(−ω; ω − ω1 − ω2, ω2, ω1)|ω1=ω2=ω=ω0 .

By doing so, we are able to attribute specific effects to the
corresponding orders of nonlinear dispersion. In a first step, we
neglect nonlinear dispersion (χ (3)

1,2,3 = 0) and explain the basic
mechanismsof compression occurring in this case. In a second step,
first order terms of nonlinear dispersion are included and their
influence upon compression is investigated. Finally, the results are
comparedwith the ones obtained from the fully dispersive (1+1)-
dimensional model.

As mentioned above, we are interested in setups with negative
n2 ∼ χ (3), which can be found near resonances in Xe [see Fig. 1].
So for the coming simulations, we introduce the abbreviation
ω−− = 7.73 × 1015 s−1 for the characteristic central frequency
ensuring a negative n2 and additionally ω00 = 7.91 × 10−15 s−1

for investigations with vanishing n2. That is, a laser pulse with
central frequency ω0 = ω−− experiences defocusing as well as
effects originating fromnonlinear dispersion,whereas a pulsewith
central frequency ω0 = ω00 lacks the usual Kerr effect ∼n2 = 0
and only undergoes nonlinear dispersive modulations.
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