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h i g h l i g h t s

• A dynamical systems model of attitude formation in groups of interacting agents is proposed.
• Agents’ states and the dynamic interaction network coevolve deterministically.
• Attitudinal dynamics are driven by an activator–inhibitor system.
• Linear stability analysis and numerical simulations are presented.
• The interplay between Turing instability and the evolving network gives rise to chaotic dynamics.
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a b s t r a c t

Adaptive networkmodels, in which node states and network topology coevolve, arise naturally inmodels
of social dynamics that incorporate homophily and social influence. Homophily relates the similarity
between pairs of nodes’ states to their network coupling strength, whilst social influence causes coupled
nodes’ states to convergence. In this paper we propose a deterministic adaptive network model of
attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are
represented by an activator–inhibitor process. We illustrate that consensus, corresponding to all nodes
adopting the same attitudinal state and being fully connected,maydestabilise via Turing instability, giving
rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics
correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss
our findings in the context of cultural polarisation phenomena.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In an adaptive network, the evolution of the states of nodes in
the network coevolvewith the network topology [1]. Adaptive net-
work models have been proposed to describe a range of phenom-
ena, including synchronisation [2–4], epidemics [5,6], cooperation
[7–9] and opinion dynamics [10–16]. See Gross and Blasius [1]
for a review. As with most complex systems, the usual paradigm
is to describe the model dynamics via a stochastic process. In this
paper we take an alternative approach, using an adaptive net-
work described by a deterministic continuous-time dynamical sys-
tem, which we use as a model for attitude formation in social

∗ Corresponding author. Tel.: +44 1133435157.
E-mail address: j.a.ward@leeds.ac.uk (J.A. Ward).

groups. Earlier studies of deterministic adaptive network models
have focused on the synchronisation of systems of coupled oscil-
lators [17,18], although discrete-time models of opinion dynamics
have also been proposed [19,20]. Part of our goal is to illustrate
how techniques from nonlinear dynamics may be used to study
adaptive networks in a way that compliments the typical statisti-
cal physics approach [21].

In this paperwe consider amodel of attitude formation in social
groups, where the attitude of each node, or agent, in the system
is described by a vector of states and the interaction patterns
between agents are governed by an evolving weighted network.
Our model incorporates two key behavioural mechanisms:

1. Social influence. This reflects the fact that people tend to modify
their behaviour and attitudes in response to the opinions of
others [22–26]. We model social influence via diffusion: agents
adjust their state according to a weighted sum (dictated by the
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evolvingnetwork) of the differences between their state and the
states of their neighbours.

2. Homophily. This relates the similarity of individuals’ states to
their frequency and strength of interaction [27]. Thus in our
model, homophily drives the evolution of the weighted ‘social’
network.

A precise formulation of our model is given in Section 2. Social
influence and homophily underpinmodels of social dynamics [21],
which cover a wide range of sociological phenomena, including
the diffusion of innovations [28–32], complex contagions [33–36],
collective action [37–39], opinion dynamics [19,20,40,10,11,13,15,
41,16], the emergence of social norms [42–44], group stability [45],
social differentiation [46] and, of particular relevance here, cultural
dissemination [47,12,48].

Combining the effects of social influence and homophily natu-
rally gives rise to an adaptive network, since social influence causes
the states of agents that are strongly connected to become more
similar, while homophily strengthens connections between agents
whose states are already similar.1 It is surprising then that the feed-
back between homophily and social influence does not necessar-
ily lead to consensus or ‘monoculture’ [47], where all nodes have
identical states and are fully connected. Instead, cultural polarisa-
tion may occur: equilibria in which groups of nodes have identical
states, but several different groups exist. Typically, cultural polari-
sation arises from the creation of ‘structural holes’ [51], which at its
extreme leads to fragmentation of the network [15,16]. However,
cultural polarisation is not necessarily stable when there is ‘cul-
tural drift’, i.e. small, random perturbations or noise, which drives
the system towardsmonoculture [52]. Since diversity and even po-
larisation of opinions are observed in society [47,48], there have
been a number of attempts to developmodelswith polarised states
that are stable in the presence cultural drift [12,48], but this is still
an open problem [21].

In this paper, we investigate whether a general class of activa-
tor–inhibitor processes on an adaptive network can give rise to po-
larisation of attitudes. While the resulting dynamics illustrate that
such systems are interesting in their own right, they are also per-
haps a natural choice in the context of sub-conscious attitude for-
mation. Neuropsychological evidence suggests that the activation
of emotional responses and the regulation of inhibitions are asso-
ciated with different parts of the brain [53]. This has led psycholo-
gists to develop theories in which various personality traits (such
as extroversion, impulsivity, neuroticism and anxiety) form an
independent set of dimensions along which different types of be-
haviourmay be excited or regulated [54–56]. There is also substan-
tial evidence that such automated and sub-conscious processes
play an important role in evaluations and judgements [57]. Thus
while it may be extremely difficult to perform empirical measure-
ments on which models of sub-conscious attitude formation may
be based, such processes almost certainly influence what we per-
ceive to be conscious decision making.

One of the benefits of our dynamical systems formulation is that
we are able to analyse the stability of the consensus equilibrium,
and in Section 2 we show that Turing instability can arise. Further-
more, in Section 3we illustrate, via numerical simulations, that the
tension between Turing instability and the coevolution of the so-
cial network and attitudinal states gives rise to aperiodic dynamics
that have a sensitive dependence on initial conditions. These dy-
namics correspond to the formation and dissolution of sub-groups
that adopt distinct, non-equilibrium, attitudinal states. In Section 4
we discuss the transient patterns we observe in the context of cul-
tural polarisation observed in other models.

1 Note, however, that differentiating between the effects of homophily and social
influence in observational settings may be very difficult [49,50].

2. A deterministic model of attitude formation

In this sectionwe give a precise description of our adaptive net-
work model of sub-conscious attitude formation in social groups.
This model consists of two sets of coupled ordinary differen-
tial equations, one to describe the dynamics of agents’ attitudi-
nal states and the other to describe the evolution of the coupling
strengths between nodes.

Consider a population of N identical individuals (nodes/agents/
actors), each described by a set of M real attitude state variables
that are continuous functions of time t . Let xi(t) ∈ RM denote the
ith individual’s attitudinal state. In the absence of any influence or
communication between agents we assume that each individual’s
state obeys an autonomous rate equation of the form

ẋi = f(xi), i = 1, . . . ,N, (1)
where f is a given smooth field over RM , such that f(x∗) = 0 for
some x∗. Thus (1) has a uniform population equilibrium xi = x∗,
for i = 1, . . . ,N , which we shall assume is locally asymptotically
stable. As discussed in the Introduction, we shall more specifically
assume that (1) is drawn from a class of activator–inhibitor sys-
tems [58–60].

Now suppose that the individuals are connected up by a dynam-
ically evolving weighted network. Let A(t) be the N × N weighted
adjacency matrix for this network at time t , with the ijth term,
Aij(t), representing the instantaneousweight (frequency and/or tie
strength) of themutual influence between individual i and individ-
ual j at time t . Throughout we assert that A(t) is symmetric, con-
tains values bounded in [0, 1] and has a zero diagonal (no self influ-
ence). We extend (1) and adopt a first order model for the coupled
system:

ẋi = f(xi) + D
N
j=1


xj − xi


Aij(t), i = 1, . . . ,N. (2)

Here D is a real, diagonal and non-negative matrix containing the
maximal transmission coefficients (diffusion rates) for the corre-
sponding attitudinal variables between neighbours. Thus some of
the attitude variables may be more easily or readily transmitted,
and are therefore influenced to a greater extent by (while simulta-
neously being more influential to) those of neighbours. Note that
xi = x∗, for i = 1, . . . ,N , is also a uniform population equilibrium
of the augmented system.

LetX(t) denote theM×N matrixwith ith column given by xi(t),
and F(X) be the M × N matrix with ith column given by f(xi(t)).
Then (2) may be written as

Ẋ = F(X) − DX∆. (3)
Here ∆(t) denotes the weighted graph Laplacian for A(t), given by
∆(t) = diag(k(t)) − A(t), where k(t) ∈ RN is a vector containing
the degrees of the vertices (ki(t) =

N
j=1 Aij(t)). Eq. (3) has a rest

point at X = X∗, where the ith column of X∗ is given by x∗ for all
i = 1, . . . ,N .

To close the system, consider the evolution equation for the ijth
edge, Aij(t), given by

Ȧij = αAij(1 − Aij)(ε − φ(|xi − xj|)). (4)
Here α > 0 is a rate parameter; ε > 0 is a homophily scale para-
meter; |·| is an appropriate normor semi-norm; andφ : R → R is a
real function that incorporates homophily effects. We assume that
φ(|xi−xj|) ≥ 0 and thatφ ismonotonically increasingwithφ(0) =

0. Note that the sign of the differences held in ε −φ(|xi − xj|) con-
trols the growth or decay of the corresponding coupling strengths.
The matrix A(t) is symmetric, so in practice we only need to calcu-
late the super-diagonal terms. The nonlinear ‘‘logistic growth’’-like
term implies that theweights remain in [0, 1], whilewe refer to the
term ε − φ(|xi − xj|) as the switch term.
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