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Where do inertial particles go in fluid flows?
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Abstract

We derive a general reduced-order equation for the asymptotic motion of finite-size particles in unsteady fluid flows. Our inertial equation is a
small perturbation of passive fluid advection on a globally attracting slow manifold. Among other things, the inertial equation implies that particle
clustering locations in two-dimensional steady flows can be described rigorously by the Q parameter, i.e., by one-half of the squared difference
of the vorticity and the rate of strain. Use of the inertial equation also enables us to solve the numerically ill-posed problem of source inversion,
i.e., locating initial positions from a current particle distribution. We illustrate these results on inertial particle motion in the Jung–Tél–Ziemniak
model of vortex shedding behind a cylinder in crossflow.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finite-size or inertial particle dynamics in fluid flows can
differ markedly from infinitesimal particle dynamics: both
clustering and dispersion are well-documented phenomena
in inertial particle motion, while they are absent in the
incompressible motion of infinitesimal particles. As we show
in this paper, these peculiar asymptotic features are governed
by a lower-dimensional inertial equation which we determine
explicitly.

Let u(x, t) denote the velocity field of a two- or three-
dimensional fluid flow of density ρ f , with x referring to
spatial locations and t denoting time. The fluid fills a compact
(possibly time-varying) spatial regionD with boundary ∂D; we
assume that D is a uniformly bounded smooth manifold for
all times. We also assume u(x, t) to be r times continuously
differentiable in its arguments for some integer r ≥ 1. We
denote the material derivative of u by

Du
Dt

= ut + (∇u)u,

where ∇ denotes the gradient operator with respect to x.
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Let x(t) denote the path of a finite-size particle of density
ρp immersed in the fluid. If the particle is spherical, its velocity
v(t) = ẋ(t) satisfies the equation of motion (cf. Maxey and
Riley [13] and Babiano et al. [2])

ρpv̇ = ρ f
Du
Dt
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Here ρp and ρ f denote the particle and fluid densities,
respectively, a is the radius of the particle, g is the constant
vector of gravity, and ν is the kinematic viscosity of the
fluid. The individual force terms listed in separate lines on the
right-hand side of (2) have the following physical meaning:
(1) force exerted on the particle by the undisturbed flow, (2)
buoyancy force, (3) Stokes drag, (4) added mass term resulting
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from part of the fluid moving with the particle, and (5) the
Basset–Boussinesq memory term. The terms involving a2∆u
are usually referred to as the Fauxén corrections.

For simplicity, we assume that the particle is very small
(a � 1), in which case the Fauxén corrections are negligible.
We note that the coefficient of the Basset–Boussinesq memory
term is equal to the coefficient of the Stokes drag term times
a/

√
πν. Therefore, assuming that a/

√
ν is also very small,

we neglect the last term in (2), following common practice
in the related literature (Michaelides [14]). We finally rescale
space, time, and velocity by a characteristic length scale L ,
characteristic time scale T = L/U and characteristic velocity
U , respectively, to obtain the simplified equations of motion

v̇ −
3R

2
Du
Dt

= −µ (v − u) +

(
1 −

3R

2

)
g, (2)

with

R =
2ρ f

ρ f + 2ρp
, µ =

R

St
, St =

2
9

( a

L

)2
Re,

and with t , v, u and g now denoting nondimensional variables.
Variants of Eq. (2) have been studied by Babiano, Cartwright,
Piro and Provenzale [2], Benczik, Toroczkai and Tél [5], and
Vilela, de Moura and Grebogi [20].

In Eq. (2), St denotes the particle Stokes number and
Re = U L/ν is the Reynolds number. The density ratio R
distinguishes neutrally buoyant particles (R = 2/3) from
aerosols (0 < R < 2/3) and bubbles (2/3 < R < 2). In the
limit of infinitely heavy particles (R = 0), Eq. (2) become the
Maxey–Riley equations derived originally in [13]. The 3R/2
coefficient represents the added mass effect: an inertial particle
brings into motion a certain amount of fluid that is proportional
to half of its mass. For neutrally buoyant particles, the equation
of motion is simply D

Dt (v − u) = −µ (v − u), i.e., the relative
acceleration of the particle is equal to the Stokes drag acting on
the particle.

Rubin, Jones and Maxey [17] studied (2) with R = 0 in
the special case when u describes a two-dimensional cellular
steady flow model. They used a geometric singular perturbation
approach developed by Fenichel [8] to understand particle
settling in the flow. The same technique was employed by
Burns et al. [7] in the study of particle focusing in the wake
of a two-dimensional bluff body flow, which is steady in a
frame co-moving with the von Kármán vortex street. Recently,
Mograbi and Bar-Ziv [15] discussed this approach for general
steady velocity fields and made observations about the possible
asymptotic behaviors in two dimensions.

Here we consider finite-size particle motion in general
unsteady velocity fields, extending Fenichel’s geometric
approach from time-independent to time-dependent vector
fields. Such an extension has apparently not been considered
before in dynamical systems theory, thus the present work
should be of interest in other applications of singular
perturbation theory where the governing equations are non-
autonomous. We construct an attracting slow manifold that
governs the asymptotic behavior of particles in system (2).
We also obtain an explicit dissipative equation, the inertial

equation, that describes the flow on the slow manifold. This
equation has half the dimension of the Maxey–Riley equation;
this fact simplifies both the qualitative analysis of inertial
dynamics and the numerical tracking of finite-size particles.

For two-dimensional steady flows, we use the inertial
equation to give a complete description of the asymptotic
behavior of aerosols, bubbles, and neutrally buoyant particles.
For general unsteady flows, we show how the inertial equation
can be used to locate the initial positions of dispersed
particles. Such source inversion is not possible using the full
Maxey–Riley equation, because for µ � 1, the −µu term in
(2) causes numerical solutions to blow up quickly in backward
time. We illustrate the forward- and backward-time use of the
inertial equation on the von Kármán vortex-street model of
Jung, Tél and Ziemniak [12].

2. Singular perturbation formulation

The derivation of the equation of motion (2) is only correct
under the assumption µ � 1, which motivates us to introduce
the small parameter

ε =
1
µ

� 1,

and rewrite (2) as a first-order system of differential equations:

ẋ = v,

εv̇ = u(x, t) − v + ε
3R

2
Du(x, t)

Dt
+ ε

(
1 −

3R

2

)
g. (3)

This formulation shows that x is a slow variable changing
at O(1) speeds, while the fast variable v varies at speeds of
O(1/ε).

To transform the above singular perturbation problem to a
regular perturbation problem, we select an arbitrary initial time
t0 and introduce the fast time τ by letting

ετ = t − t0.

This type of rescaling is standard in singular perturbation theory
with t0 = 0. The new feature here is the introduction of a
nonzero present time t0 about which we introduce the new fast
time τ . This trick enables us to extend the existing singular
perturbation techniques to unsteady flows.

Denoting differentiation with respect to τ by prime, we
rewrite (3) as

x′
= εv,

φ′
= ε,

v′
= u(x, φ) − v + ε

3R

2
Du(x, φ)

Dt
+ ε

(
1 −

3R

2

)
g, (4)

where φ ≡ t0 + ετ is a dummy variable that renders the above
system of differential equations autonomous in the variables
(x, φ, v) ∈ D× R × Rn ; here n is the dimension of the domain
of definition D of the fluid flow (n = 2 for planar flows, and
n = 3 for three-dimensional flows).
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