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A novel coupling scheme using M > 2 arrays of coupled nonlinear elements arranged in a specific
configuration can produce multifrequency patterns or a frequency down-converting effect on an external
(input) signal. In such a configuration, each array contains N > 3 nonlinear elements with similar
dynamics and each element is coupled unidirectionally within the array. The subsequent arrays in the
cascade are coupled in a similar fashion except that the coupling direction is arranged in the opposite
direction with respect to that of the preceding array. Previous theoretical work and numerical results
have already been reported in [P. Longhini, A. Palacios, V.In, ]. Neff, A. Kho, A. Bulsara, Exploiting dynamical
symmetry in coupled nonlinear elements for efficient frequency down-conversion, Phys. Rev. E 76 (2007)
026201]. This paper is focused on results of experiments implemented on two distinct systems: the first
system is fabricated using discrete component circuits to approximate an overdamped bistable Duffing
oscillator described by a quartic potential system, and the second system is built in a microcircuit, where
the nonlinearity is described by a hyperbolic tangent function, with the option of applying an external
signal to investigate resonant effects. In particular, the circuit implementations for each case use M = 2
arrays, but their voltage oscillations already demonstrate that the frequency relations between each of the
successive arrays decrease by a rational factor, conforming to earlier theoretical and numerical results for
the general case containing M arrays. This behavior is important for efficient frequency down-converting
applications which are essential in many communication systems where heterodyning is typically used
and it involves multi-step processes with complicated circuitry.

Published by Elsevier B.V.

1. Introduction

N oscillators, possessing Zy-symmetry (cyclic group of permuta-
tions of N objects) can lead to one array oscillating in synchrony

The process of generating new frequencies from an original os-
cillatory signal, either up-converting or down-converting the in-
coming signal, has been traditionally of interest in physics and
engineering with applications that include: sensitive optical de-
tection, music synthesis, acoustic and optical resonators, ampli-
tude modulation, satellite communications, image extraction, and
phase-noise measurements [1-7]. In recent works, we developed
the theoretical foundations, and the first experimental demonstra-
tion, of an innovative technique for frequency up-conversion [8],
while later, we extended the theory to include frequency down-
conversion [9,10]. The underlying principle of this new technique
is symmetry [11]. For instance, we have shown that symmetry-
breaking Hopf bifurcations in a network of two arrays, each with
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but at N times the frequency of the other array. We emphasize that
the multifrequency effect is significantly different from that of sub-
harmonic and ultraharmonic motion generated as is described by
Hale and Gambill [12] and later by Tiwari and Subramanian [13].
In our case, the multifrequency behavior arises from the mutual in-
teraction of the arrays via Hopf bifurcations. A distinctive feature
of this approach is the model independent nature of its founda-
tions, so it can be readily applicable to a wide range of dynamical
classes and systems. Also important is that the approach can lead
to various frequency up/down-conversion ratios in a single-step
process using the dynamical behaviors as opposed to the multi-
step process typical of heterodyning/superheterodyning methods
which involve complicated circuitries and high precision, stable os-
cillators.

In this work, we show that a frequency down-conversion
effect can be realized in physical systems comprising electronic
circuits in full agreement with previous theoretical work [10]. The
frequency down-conversion effect is achieved through a cascade of
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Fig. 1. Generalized network configuration of M arrays with N oscillators per array.
Each array is coupled with a preferred direction but that direction alternates from
one array to the next. The A;s are coupling strengths within array i while Cj is the
strength of coupling from array i to array j.

Table 1

Down-conversion ratios between the frequencies of the X -array, wx, , and X, -array,
wy, , for a network of two coupled arrays interconnected as is shown in Fig. 1. kis a
positive integer.

Number of cells wyx, [ Wx,

3 2 5 3k—1
5 4 9 5k—1
7 6 13 7k—1
9 8 17 9k —1
N N-—-1 2N -1 Nk—1

M arrays of oscillators, with N oscillators per array, as is illustrated
in Fig. 1.

The efficiency in lowering the frequency from one array to
the next can be used in many applications which require shifting
the frequency down from high to low for ease of digitizing the
signal using an available analog-to-digital converter suitable for
the task, as many communication systems and others routinely
do. In the absence of an external signal, and for the particular
case of M = 2 symmetrical arrays with three elements N = 3
per array, the down-conversion ratio of the collective frequency
of the first array can be 1/2, 1/5, or 1/11. Table 1 shows a
generalization of the down-conversion ratios for M = 2 arrays,
including commensurate ratios, for various values of N. A more
general result for M coupled arrays with N elements in each
array obtained through various coupling topologies can be found
in [10]. Therefore, the focus of this paper is on the experimental
implementations to confirm the existence of those patterns for
M = 2.

The experiments implemented here are based on two distinct
systems. The first one consists of coupled overdamped Duffing
oscillators, so the individual dynamics of each element in the
array is governed by % = ax — bx3, where x(t) is the state
variable at time t, and a and b are coefficients of the linear and
nonlinear parts, respectively. This system is constructed using
discrete component electronics capable of oscillating up to the
kilohertz range. The second experiments consists of coupled
bistable systems constructed from integrated circuits where the
individual dynamics of each unit cell is described by T % = —gx+
Is tanh(csx), where 7 is the time constant of the entire dynamics, g
is a linear coefficient, and I; and c; are coefficients controlling the
(nonlinearity) bistability of the dynamics. These two experimental

systems are distinct in nature, which shows the generality and
applicability of the frequency down-conversion method.

We have limited the experimental work in this paper to two
cascading arrays in order to keep the complexity of the circuitry to
a minimum while allowing us to demonstrate the phenomenology
of frequency down-conversion. Analyses of the effects of noise on
the signal and the system are important issues and we defer them
to future work.

2. Experimental systems and results

A circuit version of Fig. 1, using a two-array cascade, was
constructed using coupled overdamped Duffing oscillators. To
simplify the use of the index notation for identifying the unit cells
of each array, we will label the first array as the X-array and the
second array as the Y-array from here on, and a single index i will
suffice. Each array consists of subunits x1, X, and x5 for the X-array
and y1, ¥, and y3 for the Y-array. The dynamics of the coupled
arrays system are then described by

X = ax; — bx® + A(Xi1)
Vi = ay; — by® + Ayi(is2) + Cyi,

wherei = 1, 2,3 mod 3, and x; and y; are the state variables of
the ith subunit in the X-array and Y-array, respectively. A,; is the
coupling coefficient of the ith subunit within the X-array, A, is the
coupling coefficient of the ith subunit within the Y-array, and Cy,
is the cross-coupling from the X-array to the Y-array.

The circuit for each unit consists mainly of operational
amplifiers, which act as summing-inverting amplifiers, and
integrators, and produce the linear and nonlinear terms, which
represent the dynamics of a subunit; see Fig. 2. Additional
operational amplifiers are used for the unidirectional function of
coupling between the oscillators within an array and the terms for
the cross-coupling between the arrays, which connect the X-array
to the Y-array as shown in the diagram of Fig. 1.

The complete diagram of the electronic network of the two
arrays is given in Fig. 3. Careful attention is given to the selection
of components in order to match the subunits in each array. Even
after this is done, we still notice that they differ considerably. This
is due to the availability of parts and to the difficulty in producing
the nonlinear term, which in the electronic circuit is implemented
as a piecewise linear function.

All values of the components used in the circuit are given in
Table 2. They were selected through hardware simulations, via
the SPICE program (an analog electronic circuit simulator), of a
model of the circuit. Such hardware simulations are critical for
minimizing the trial and error process of testing various resistor
and capacitor values that set the coefficients a, b, Ay, Ay, and Gy,
to the appropriate operational regime before fabricating the actual
experimental system.

When the circuit is first powered up with a 5.0 V power
supply, Ay; is set to a value slightly below the critical value, A, fora
sustained oscillation. This critical coupling value was determined
in [14] to be A, = % when the arrays are decoupled from
each other. From the circuit diagram, the linear coefficient a is
determined to be 2—; which sets A, = % Setting the coupling
value is done by choosing the particular value in the feedback
resistors, R., where A, = %. As a result, all the unit cells
in the array remain in stationary states. The X-array is set, with
Mi = II(%‘ to slightly greater than the critical value to initiate the
oscillation in an out-of-phase pattern. It may take several trials to
get to the correct pattern because the behavior is dependent on the
initial condition of the coupled systems. In one instance a different
pattern may show up where the oscillations of the unit cells are
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