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Abstract

In a smooth input/output process y = f (x), if the input data x ∈ Rd is noise free and only the output data y is corrupted by noise, then a near
optimal smooth model ĝ will be a close approximation to f . However, as previously observed, for example in [H. Kantz, T. Schreiber, Nonlinear
Time Series Analysis, 2nd ed., Cambridge Univ. Press, 2004], if the input data is also corrupted by noise then this is no longer the case. With
noise on the inputs, the best predictive smooth model based on noisy data need not be an approximation to the actual underlying process; rather,
the best predictive model depends on both the underlying process and the noise. A corollary of this observation is that one cannot readily infer the
nature of a process from noisy data. Since almost all data has associated noise this conclusion has some unsettling implications. In this note we
show how these effects can be quantified using the Gamma test.

In particular we examine the Gamma test analysis of noisy time series data. We show that the noise level on the best predictive smooth model
(based on the noisy data) can be much higher than the noise level on individual time series measurements, and we give an upper bound for the
first in terms of the second.
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1. Introduction

In the analysis of time series, we often hypothesize that the
variable of interest is just one of a number of variables of a
complex dynamic system, described by a system of differential
equations. Following the work of Takens [10] we seek to predict
the next value (output) based on a number d of previous values
(input). In this context, the input is called a delay vector and d
is called the embedding dimension.

For a time series (zt ), Takens’ theorem [10] and its
subsequent extensions ensure, under a broad range of
circumstances, that there exists a smooth function f with
bounded partial derivatives such that

zt = f (zt−1, zt−2, . . . zt−d) (1)
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which, provided d is sufficiently large to unfold the dynamics,
can be used as the basis for a recursive one-step prediction.

By smooth function, we mean throughout that f and its
partial derivatives of first (and possibly higher) orders exist, are
continuous over a compact region, and are therefore bounded.
To be explicit we suppose |∇ f |

2
≤ B over the region in

question.

1.1. Stochastic time series

We draw a distinction between the subject of our paper –
what we have called noisy time series – and that of stochastic
time series. For a univariate stochastic time series with additive
noise (often assumed to be Gaussian), the process is defined
according a recursive rule of the form

zt = f (zt−1, zt−2, . . . zt−d) + et (2)

where f is a smooth function and et is a realization of some
random variable (if f is linear, these are called linear stochastic
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time series). The significant fact is that the noise et−1 associated
with the previous value zt−1 of the time series feeds through to
affect the next value zt , so this noise plays a role in determining
the evolution of the time series.1

1.2. Noisy time series

We consider the case where a noise-free time series (zt ) is
observed under additive noise, i.e.

yt = zt + rt (t = 1, 2, 3, . . . , M) (3)

where the true values zt are subject to independent
and identically distributed random perturbations rt having
expectation zero.

We assume that the noise-free value zt is determined by a
smooth function f : Rd

→ R of some number d of the previous
noise-free values zt−1, . . . , zt−d ,

zt = f (zt−1, . . . , zt−d). (4)

Thus we imagine that in reality, the variable zt (part of
a high-dimensional non-linear dynamical process) is evolving
according to an unknown but smooth rule such as (4), but
that what we actually observe, typically as a consequence of
measurement error, are the corrupted values yt = zt + rt .
Importantly, and in contrast with stochastic time series, the
noise associated with previous values such as yt−1 does not feed
through to affect the value yt .

Of course, in many real world situations a time series may
be both stochastic and noisy. However, here we seek to examine
just those features specifically relating to noisy time series.

In the context of non-linear dynamic systems time series
state space reconstruction, the noise that we have considered
is termed ‘observational noise’. The question of optimal
prediction for time series under observational noise is also
considered as a special case in Casdagli et al. [1], which studies
in considerable detail the more general issues surrounding state
space reconstruction under noise.

1.3. Effective noise

For d ∈ N, let xd+1, . . . , xM denote the noisy delay vectors:

xt = (yt−1, . . . , yt−d) ∈ Rd . (5)

Using only the noisy time series data (xt , yt ), we seek to
identify a smooth function g : Rd

→ R that ‘best explains’ the
observed behaviour of the time series. We first clarify what is
meant by ‘best explains’, i.e. what is an optimal smooth model
in this context.

Let S = {h : Rd
→ R | h smooth, |∇h|

2
≤ B}, i.e. S is

the class of smooth functions in the sense described earlier. For
each h consider the mean squared error

MSE(h) = E((y − h(x))2) (6)

1 This type of noise is often called ‘dynamic noise’ in the literature on
dynamic systems, see for example Casdagli et al. [1].

where the expectation is taken over all realizations of the
input/output pair (x, y). The set of optimal predictive smooth
data models is defined to be

Sopt = {g ∈ S : MSE(g) ≤ MSE(h) for all h ∈ S}. (7)

Let g ∈ Sopt. We write

y = g(x) + R (8)

where R is a zero-mean random variable, called the effective
noise on the output, which accounts for all variation in
the output that cannot be accounted for by any smooth
transformation of the input.

Note that

E(R2) = E((y − g(x))2) = MSE(g) (9)

so the variance of the effective noise coincides with the
minimum achievable mean squared error by a smooth data
model based on the given selection of inputs.

To best model the time series data, we need to identify a
function ĝ ∈ S which is as close as possible to an optimal
data model g ∈ Sopt. Such a model will have close to minimal
E
(
(y − ĝ(x))2) and will not change significantly as more and

more data is used in the model construction, i.e. as M → ∞.
We describe such a model as ‘asymptotically stable’.

By (6) and (8),

MSE(ĝ) = E(R2) + E((g(x) − ĝ(x))2). (10)

Once the model selection process has been completed, it
is tempting to assume that g = f , and hence that ĝ is
an approximation to the original function f that generated
the noise-free data zt . However, as observed in Kantz and
Schreiber [6] and as we illustrate here, this is not necessarily
the case. The main contribution of this note is to illustrate how
these differences can be quantified using the Gamma test.

1.4. Model construction

In practice, given a noisy time series (yt ), we seek to
construct an asymptotically stable model ĝ for which the
empirical mean squared error, defined by

MSEemp(ĝ) =
1

M − d

M∑
t=d+1

(yt − ĝ(xt ))
2 (11)

is as close as possible to E(R2), the variance of the effective
noise. By (10), this ensures that ĝ is as close as possible to
an optimal predictive data model g ∈ Sopt (in a mean squared
sense).

Our tool for estimating var(R) is the Gamma test [5], and
we show how the results of a Gamma test analysis should
be interpreted first when applied to input/output data with
noisy inputs, and second when applied to noisy time series
data.
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