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a b s t r a c t

We derive a canonical model for gradient frequency neural networks (GFNNs) capable of processing time-
varying external stimuli. First, we employ normal form theory to derive a fully expanded model of
neural oscillation. Next, we generalize from the single oscillator model to heterogeneous frequency
networks with an external input. Finally, we define the GFNN and illustrate nonlinear time-frequency
transformation of a time-varying external stimulus. This model facilitates the study of nonlinear time-
frequency transformation, a topic of critical importance in auditory signal processing.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Most existing work on neural oscillator networks focuses
on the intrinsic dynamics of networks with a homogeneous
distribution of oscillator frequencies. The truncated normal form
(see, e.g., [1–3]) provides a suitable canonical model for the study
of network dynamics in such cases (e.g., [4,5]) because it includes
all resonant terms necessary to understand the interactions of
oscillators with equal (or ε-close) frequencies. We wish to study
heterogeneous frequency oscillator networks that process external
stimuli because this topic is of critical relevance to understanding
auditory processing. A growing body of evidence suggests that the
auditory nervous system is highly nonlinear, and that nonlinear
transformations of auditory stimuli have important functional
consequences [6–10]. Thus, findings and interpretations about
the dynamics of heterogeneous networks may have relevance for
cochlear modeling [11–14] and brainstem physiology [9,15,10], as
well as pitch and music perception [16–18].
Our goal is to develop a model of neural oscillation that facil-

itates investigations of the nonlinearities that underlie auditory
physiology and perception. Our approach involves specifying an
appropriate class of oscillators and transforming it to a generic
form, known as a normal form, via normal form theory [3,19,20,2,1].
Normal forms are important analytical tools in the local analysis of
dynamical systems in the neighborhood of elementary solutions
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such as equilibria and periodic orbits. The principal goal of normal
form theory is to obtain local coordinates in terms of which a dy-
namical system near an elementary solution has a ‘‘simplest’’ form
or canonical representation which, in turn, can facilitate its analy-
sis. The structures of the normal forms we consider are in terms of
‘‘resonances’’ (e.g., [19,20,1]).
An important issue that arises when considering the external

stimulation of an oscillator network is that the structure of the
input to any given oscillator is not known in advance. Moreover, at
any given time, the stimulusmay contain a combination of external
and internal (within the network) signals. The key to our approach
to obtaining a canonical model is to fully expand the nonlinearities
and the resonant terms of the normal form for each oscillator
based on its natural frequency. Any frequencies in the stimulus
that ‘‘resonate’’ with the natural frequency will have significant
effects on the canonical oscillator’s dynamics. This approach leads
us to consider external stimulation at the level of the canonical
model instead of at the level of the original class of oscillators,
simplifying the analytical nature of the resulting model. In what
follows, we define gradient-frequency neural networks (GFNN’s)
and derive a canonical GFNN. We compare the nonlinear time-
frequency transformation of an acoustic stimulus by a GFNN based
on Wilson–Cowan oscillators and a GFNN based on our canonical
model.

2. A truncated canonical model for neural oscillator networks

Consider the general system of coupled neural oscillators
modeled by the network equations:

u̇i = fi(ui, vi, λ)+ εpi(u1, v1, . . . , un, vn, ε)
v̇i = gi(ui, vi, λ)+ εqi(u1, v1, . . . , un, vn, ε).

(1)
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In Eq. (1), {ui, vi} ⊂ R represent the coordinates of the state
of the ith oscillator. λ represents the set of parameters of the
functions fi and gi. ε > 0 is a connectivity parameter.
Appendix A, briefly reviews one of the standard procedures for

obtaining normal forms and clarifies the relationship between a
normal form and a canonical model. As discussed in Appendix A,
the classical analysis leading to a normal form for Eq. (1) involves
a coordinate transformation, dependent on the Jacobian matrix of
the system, and an expansion of the nonlinearities. For the class
of neural oscillators represented by Eq. (1), normal form theory
(see [1,5,2,21,3,22]) leads to a generic form (Eq. (2)) in a new
complex valued state variable, z, resulting from the coordinate
transformation.
żi = zi(ai + bi|zi|2)+ xi(t)+ h.o.t., i ∈ {1, . . . , n ∈ Z+}
where

xi(t) =
n∑
j6=i

cijzj, {ai, bi, cij, zi} ⊂ C.
(2)

Eq. (2) is also a canonicalmodel representing the local dynamics
about an Andronov–Hopf bifurcation for the entire class of neural
oscillators given by Eq. (1). It has complex-valued parameters ai
and bi which can be related, via the coordinate transformation
(see [1,5]), to the parameters of the original system (Eq. (1)).
In standard complex form, ai = αi + ıωi, where ωi is the
natural frequency or eigenfrequency of the ith oscillator, and bi =
βi + ıδi. The complex coefficients cij represent the coupling
strengths among the oscillators. Note that xi(t) represents the total
combination of input to the ith oscillator, including all coupled
inputs from other oscillators. The system given by Eq. (2) is an
appropriate model for the study of a system such as Eq. (1) near
one of its bifurcation points, e.g., at an Andronov–Hopf bifurcation,
where each oscillator will have a specific frequency. Normal form
models, with the addition of an external stimulus, i.e., xi(t) =
s(t) + cijzj, have been proposed to capture some functionally
important nonlinearities of the mammalian cochlea [23,13].
Eq. (2) is referred to as a truncated normal form because the

expansion of the nonlinearities (Eq. (1)) is truncated, effectively
ignoring the higher order terms, h.o.t . It is important to realize,
however, that any interactions between oscillators of different
frequencies in Eq. (1) would be captured in the higher order terms
of Eq. (2). But if it is assumed that all oscillators in the network have
frequencies that are ε-close (see, e.g., [1] Thm. 5.8 Pg. 165), then the
higher order terms have a negligible effect on the dynamics of the
system, and there is a canonical model given by Eq. (3).

żi = zi(ai + bi|zi|2)+
n∑
j6=i

cijzj

+O(
√
ε), i ∈ {1, . . . , n ∈ Z+}. (3)

The behavior of the canonical system Eq. (3) can be further
understood by transforming it to polar coordinates (Eq. (4)) by
expressing zi in terms of its amplitude ri and phase φi: zi(t) =
ri(t)eıφi(t). The coupled input xi(t) =

∑n
j6=i cijzj can be represented

in polar formaswell, say, by Fi(t)eıθi(t)where Fi and θi represent the
amplitude and phase, respectively. This polar representation of the
model allows for the independent study of amplitude and phase
dynamics, and makes the meaning of the parameters explicit.

ṙi = ri(αi + βir2i )+ Fi cos(φi − θi)+ O(
√
ε)

φ̇i = ωi + δir2i −
Fi
ri
sin(φi − θi)+ O(

√
ε).

(4)

2.1. Neural oscillator network with input

Because of their theoretical and practical importance, we want
to study nonlinear oscillator networks under the influence of
complex acoustic stimuli. When external input (ρui(t), ρvi(t)) ∈

R2 is specified in the original system as shown in Eq. (5) then the
transformative procedure employed to obtain the normal formalso
transforms the external input.

u̇i = fi(ui, vi, λ)+ εpi(u1, v1, . . . , un, vn, ρui(t), ε)
v̇i = gi(ui, vi, λ)+ εqi(u1, v1, . . . , un, vn, ρvi(t), ε).

(5)

This transformation leads to significant complexities in deriving
a canonical model. For example, the expressions representing
coupling coefficients can involve limits of integrals that are not
necessarily convergent, or other complex expressions ([1] Thm.
5.10 p. 176). Moreover, if the input is resonant with the oscillators’
natural frequencies, the canonical model may be difficult or
impossible to derive. Due to such complexities, known methods
for deriving canonical models cannot be applied.
Here we consider a different approach, taking into account

the fact that canonical models are generic models for a system’s
local dynamics about one of its attractors. In this paradigm, the
canonical model for a system without external input is considered
as the fundamental model representing the intrinsic dynamics of
a system. This essentially models a system at one of its behavioral
modes. The generic mode of the system and its resonant behavior
to input is precisely the case we are interested in as it corresponds
to important physical situations (e.g., [5,13]). Thus, Eq. (2) becomes
the fundamental model of interest, and additive external input
s(t) ∈ C to oscillator zi can be included in the coupling term xi(t)
as follows.

xi(t) = s(t)+
n∑
j6=i

cijzj. (6)

Next, we consider the case in which a network of neural os-
cillators can have different natural frequencies, perhaps spanning
several orders of magnitude. In this case, intrinsic oscillator fre-
quencies do not need to be ε-close. Such freedom makes the anal-
ysis of such systems more difficult, but the dynamics are more
interesting in terms of new behaviors. We then consider an exter-
nal input whose frequency content is not known a priori. We fully
expand the nonlinearities and resonances contained in the higher
order terms h.o.t . of Eq. (2), to incorporate the responses to an in-
put of unknown frequency. We then compare the response of the
canonical model to the input with that of a particular neural oscil-
lator model.

3. A fully expanded canonical model for a single neural
oscillator with an input

In this section we derive a fully expanded canonical model
corresponding to the dynamical system Eq. (1) by continuing the
expansion of higher order terms (h.o.t.) of the normal form near
an Andronov–Hopf bifurcation. Higher order terms of the normal
form are necessary to capture the response of an oscillator to
an input that is not close to its natural frequency. We employ
the linear relationship, or resonance, given by Eq. (A.2) in terms
of the system’s eigenvalues. Note that near the Andronov–Hopf
bifurcation, the canonical oscillator frequencies {ω1, . . . , ωn} are
absolute values of the eigenvalues of the system represented by
Eq. (1) (see [1,5]). In this case, the resonance relationship becomes:

ωres = n1ω1 + · · · + nmωn
where {m, n} ⊂ Z+, res ∈ {n1, . . . , nm} ⊂ Z+.

(7)

This relationship leads to resonant monomials, which correspond
to resonances among the eigenvalues of the original system
that cannot be eliminated from the normal form [1]. Resonant
monomials capture harmonics, subharmonics, and higher order
combinations of the input frequencies. For example, we can
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