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a b s t r a c t

A transcriptional modular network cascade with general activation/repression coupling is analysed. It
is shown that in certain conditions (the Hill coefficient is unity) it is equivalent to a cascade made of
the same type of gene, and moreover the dynamics is linearisable. The protein production is shown to
be a travelling kink wave on the cascade showing a successive gene expression along it. Also a cellular
automaton description for both open and closed (plasmid) cascades is provided.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Genes are the basic building blocks for any living organism. The
main role of gene interactions is regulating each other’s activity,
and this leads to the desired response. Typically a gene is subject
to the regulatory effect of other genes. The main task of theoretical
studies on genetic circuits thus far has been on the combinatorial
control of transcriptional initiation, which to a large extent deter-
mines the connectivity of the network. It is thus extremely impor-
tant to study, and understand, the dynamics of the gene regulatory
networks in general. The activity of a gene is regulated by other
genes through the production of transcription factor (TF) proteins.
Physically, this is accomplished through the interaction of these
transcription factor proteins with the RNA polymerase complex in
the regulatory region of the gene. The gene-code segment of the
DNA chain is read by the RNA polymerase, which binds to DNA and
moves along activated by transcription factor proteins and gives
rise to the RNA messenger. This transports the respective code to
the ribosomal machine, and proteins are produced according to
codon sequences. Among these proteins we also have, of course,
constituents of the transcription factor. Cellular regulation is re-
alised by a very complex network of interactions and processes.
The links in this huge network involve tens of thousands of bio-
chemical reactions. It is, therefore, very important to find proce-
dures for simplifying the description and facilitating quantitative
analysis. One is thus led to the concept of a motif which represents
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some basic subnetwork that is classifiable on the basis of func-
tion, architecture dynamics, etc. At a bigger scale, the motifs can
be seen as being organised in modules having their specific role.
Themain task of syntheticmolecular biology is to create small syn-
thetic genetic networks, inserting them in different living cells in
order to regulate and control their behaviour. Recent experimen-
tal regulatory motifs include a toggle switch, a repressor oscillator,
logic gates, and pulse generators [1]. Engineered gene networks are
supposed to have tremendous applications in biotechnology and
medicine. Such engineered biological deviceswill engage in simple
computations and cell–cell communications to diagnose diseases.
Themain challenge in synthetic biology is creating and tuning gene
networks to desired functions. Tackling the problem on simpler
systems such bacterial cells will give many useful insights, while
delivery of such devices in higher organisms involves the inter-
esting problem of cell-specific recognition. The above-mentioned
regulatory motifs involve small numbers of interacting genes,
and the theoretical study is focused on stochastic/differential ki-
netic rate equations for mRNA and protein production. The com-
plexity comes from feedback activator–repressor loops, nonlinear
response functions, and the presence of noise or other stochastic
effects. These properties are all ultimately responsible for the inter-
esting physics of the motifs. Fixed points, oscillations and stochas-
tically controlled switching between different states are the main
theoretical results obtained so far (using essentially linear analy-
sis). For example, switches (theoretically modelled by stochastic
differential equations with noise-controlled bistability) proved to
be instrumental in understanding the dynamics of Phage lambda
cross-repressive feedback loops, quorum sensing, kinase path-
ways in Xenopus oocytes or synthetic switches. Oscillators have
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applications in cell cycles, glycolysis, cytosolic Ca2+, and synthetic
oscillators [2]. In this paper we are going to extend the systems de-
scribed above to ones possessing a large number of genes, namely
ensembles of regulatorymotifs andmodules in interaction.We are
going to discuss the simplest case of a modular cascade of acti-
vators/repressors and show both the dynamics and the modular
nature of it. This is quite important since motifs do not work in
isolation; complex processes such as growth, cell cycle, develop-
mental programs,motility and pathogenic processes are controlled
by motifs connected in elaborate hierarchical and feedback struc-
tures. So far the interaction between simple regulatory motifs has
been little investigated in the literature from a theoretical point of
view. Some recent work includes the effect of intercell signalling
on a population of nonidentical and noisy repressilators coupled
by quorum sensing [3]. Another result is the experimental control
of gene expression using pulse-generating networks [4].
The idea of proteomic signal propagation as a discrete nonlinear

wave along a cascade (open or closed) has been given in [5],
where we studied an alternating activator–repressor network of
genes, every one expressed by two promoters. Here we proved
that an initial protein distribution strongly localised on a certain
number of genes can propagate along the cascade in a solitonic
way, i.e., successive gene expression. Cascades are found in many
biological systems. For instance, Escherichia Coli and Saccharomices
Cerevisiae contain transcriptional cascades with many stages [6].
Protein kinase pathways exhibit cascade dynamics which regulate
activities in cells [7]. They are the basic networks which support
programs of successive gene expressions as observed in flagella
formations of E. Coli, developmental programs in Drosophila [8],
etc. Also we studied simpler cascades [9] and computed travelling
wave solutions (as kinks) taking into account the time delay
between the transcription and translation.
In this paper we propose a model of multigene cascade with

simple activator or repressor regulatory loops. We are going to
generalise the approach discussed in [5] and [9] to a cascade of
groups of different genes (modular multi-gene cascade) and show
that every such module behaves as a single gene characterised by
some effective parameters but producing proteins at a slower rate.
Also we show that the whole dynamics is integrable in the sense
that the equations are linearisable by means of a Cole–Hopf-type
transform, and support travelling kink solutions. Throughout the
paper we use (as in [9]) the discrete time approach, which is more
amenable that other approaches to analytical treatment of time-
delay effects (often encountered in modelling transcription and
translation). Moreover, we shall discuss the so-called ultradiscrete
approach [10], which allows a simpler description of any nonlinear
discrete dynamical system by the so-called tropical or ultradiscrete
limiting procedure. This one rigorously and algorithmically turns
every discrete equation (with positive definite variables and
parameters) into a generalised cellular automaton by replacing in
a specific way all the nonlinearities with the simplest nonlinear
function (namely the absolute value or f (x) = |x|), and thus the
dynamics is given by sequences of integer numbers. We shall also
present new solutions using this procedure.

2. The model

The dynamics of gene regulatory networks can be modeled
by chemical rate equations corresponding to each gene. These
equations represent, of course in a very simplified way, the
transcription and translation mechanisms. For the transcription
mechanism one must first describe the probability of the RNAp
molecule (together with transcription factors) binding to the
gene promoter region (localised at the beginning of the gene).
This probability is usually called ‘promoter activity function’. It
represents in a certainway the efficiency of transcription due to the
interaction between RNAp and the transcription factors involved
(activators and/or repressors) [11].

In a thermodynamical description [12], this probability is given
by the function

ga(p) =
1+ ωp/ka
1+ p/ka

for activation, and

gr(p) =
1

1+ p/kr
+Λ

when a gene is repressed. The Boltzmannweightω is given byω =
e−E/kT corresponding to the activator andRNAp interaction; ka,r are
the dissociation constants between the activator/repressor protein
and the respective operator sequence in the regulatory region.
Finally, Λ is the effect of the promoter leakage on the repression.
The values of ka and kr are tunable and are in the interval (1, 1000)
nM [13]. Also, ω = 100 [14], and in the case of activation for small
values of ka the second term in the numerator dominates. Also,
the promoter leakage has very small values in the range (10−3,
10−1) [13], and is neglected.
Sometimes, in order to take into account possible allosteric

polymerisations of transcription factors, an effective simplified
form is used:

ga,r(p) =
α + βpq

1+ pq
(2.1)

where q is the Hill coefficient, taking positive values which are
small (throughout the paperwewill take q = 1) andα ≥ 0, β ≥ 0.
The case of α = 0 corresponds precisely to the limit of ga(p)
when ω is big. Now we can write down the transcription process
equation for one gene activated/repressed by one transcription
factor (which is the simplest genetic circuit):

d
dt
m(t) = ga,r(p(t))− λmm(t) (2.2)

wherem(t) is the time-dependent concentration of transcription-
emerging mRNA and λm its degradation constant. The next step in
the model is to consider the protein production from this mRNA,
which enters into the ribosomalmachine (the translation process).
A linear form is usually adopted for the ribosomal efficiency as
a function of m(t). As a consequence, the translation process is
described by the following differential-delay equation:

d
dt
p(t) = νm(t − τ)− λpp(t) (2.3)

where τ is the delay between transcription and translation and λp
is the protein degradation rate. In the formulation of the model
we do not make any distinction between protein and transcription
factor. This is motivated by the fact that, in many cases, as for
instance in bacteria, the two coincide. The value of ν corresponds to
the protein synthesis at full rate of activation and has a large span
of values (1–100 nM/min) [11]. The two differential equations
(2.2) and (2.3) constitute the kinetic rate equations which govern
the dynamics of a single gene in interaction with the protein it
produces (which acts as a transcription factor).
As we pointed out in the introduction, genes do not work in

isolation. Themodel we shall consider here consists in a cascade of
genes, where the protein produced by any gene is a transcription
factor for the next gene in the network, acting on it in an activating
or repressing way. This is practically the simplest cascade. In our
model, genes are not identical as in the previous paper [9], but
they are grouped together, every group having the same number of
different genes. Accordingly this model can be viewed as a cascade
of identical genetic groups (modules), or a multigene cascade.
Related to this model we are going to study the following facts:

• This multigene cascade is equivalent to a single gene cascade
characterised by some effective parameters. This is valid only
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