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a b s t r a c t

We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative
feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is
described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the
spatial distribution of synapticweights between populations of neuronswhosemean firing rate is taken to
be a Heaviside function of local activity. Discontinuities in the adaptation variable associatedwith a bump
solution means that bump stability cannot be analyzed by constructing the Evans function for a network
with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we
show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations.
We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the
absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling
pulses. In the case of spike frequency adaptation,we show that for awide class of perturbations the activity
and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in
terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect
to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a
spatially localized breather.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Persistent, localized regions of neural activity have been
proposed as substrates of several memory and sensory processes
in the brain. Experiments in primate prefrontal cortex show that
sensory cues can often lead to a spatially localized group of
neurons persistently firing during a recall task. This ‘‘bump’’ of
activity disappears once the task is complete [1–3]. Additionally,
it has been suggested that the brain may keep the eyes still
by representing eye position as an activity bump in the medial
vestibular nucleus [4]. Also, visually evoked bumps of activity have
been seen in striate cortex due to the orientation selectivity of
recurrent connections [5]. There has been a great deal of work
developing models that explain how such bumps of activity might
arise and be sustained in a neuronal network [6–9]. One of the
simplest models known to support stationary bumps is given
by a scalar integrodifferential equation that represents averaged
population activity in a spatially extended network of neurons [6]:

τ
∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

w(x− x′)f (u(x′, t)− θ)dx′

+ I(x, t). (1.1)
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The variable u(x, t) represents the local synaptic drive to a
population of neurons at position x and time t , τ is the membrane
time constant, I(x, t) represents an external input, and w(x) is a
synaptic weight distribution. Usually w is a continuous function
satisfying w(−x) = w(x) and

∫
∞

−∞
w(x)dx <∞. The nonlinearity

f denotes an output firing rate function. Typically, f is a bounded,
positive monotone increasing function such as the sigmoid

f (u− θ) =
1

1+ exp(−η(u− θ))
(1.2)

with gain η and threshold θ . Often, existence and stability of
spatially localized solutions of Eq. (1.1) are conducted in the high-
gain limit η→∞ such that f becomes theHeaviside function [6,9]

f (u− θ) = Θ(u− θ) =
{
0 if u < θ
1 if u > θ.

(1.3)

It is then possible to establish existence of pulse solutions by ex-
plicit construction and to determine local stability in terms of an
associated Evans function. The latter is obtained by linearizing the
neural field equations about the pulse solution [10]. In the case of
stationary pulses or bumps, local stability reduces to the problem
of calculating the effects of perturbations at the bump boundary
where u(x) = θ .
Eq. (1.1) was first analyzed in detail by Amari [6], who showed

that in the case of a Heaviside nonlinearity and a homogeneous in-
put I the network can support a stable stationary bump solution
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when the weight distribution w(x) is given by a so-called Mex-
ican hat function with the following properties: w(x) > 0 for
x ∈ [0, x0) with w(x0) = 0; w(x) < 0 for x ∈ (x0,∞); w(x)
is decreasing on [0, x0]; w(x) has a unique minimum on R+ at
x = x1 with x1 > x0 andw(x) strictly increasing on (x1,∞). On the
other hand, in the case of a purely excitatory network withw(x) a
positive, monotonically decreasing function, any bump solution is
unstable and tends to break up into a pair of counterpropagating
fronts. Following Amari’s original analysis, the study of bumps in
neural fields has been extended tomultiple bump solutions in net-
works with oscillatory weight functions [11,12], two-dimensional
bumps [13,12,14–16], and weakly interacting bumps [17]. There
has also been some progress in studying the existence of bumps in
scalar neural fields when the firing rate function is continuous in
both infinite [18,19] and compact spatial domains [20].
One limitation of the scalar neural fieldmodel given by Eq. (1.1)

is that it cannot support traveling pulses nor spatially structured
oscillations when inhibition is blocked, which is inconsistent with
a variety of in vitro experimental studies of disinhibited slice prepa-
rations [21]. These more complex forms of spatiotemporal dy-
namics can occur, however, when some of form of local negative
feedback is included [22–27]. Pinto and Ermentrout proposed a
neural field model with linear negative feedback that is analogous
to the recovery variable in the Fitzhugh–Nagumo equation [22,19].
The existence and stability of stationary bumps can then be studied
using a straightforward extension of the Amari analysis, since the
bump solution is smooth in a neighborhood of the threshold cross-
ing points. However, the analysis of bump stability is more compli-
cated in the case of nonlinear forms of negative feedback such as
synaptic depression [26] and spike frequency adaptation [23,25].
In these models, the amplitude of the feedback depends on the fir-
ing rate so if the latter is taken to be a Heaviside function, then
the resulting dynamical systembecomes piecewise smooth. In par-
ticular, it is no longer possible to determine stability by directly
linearizing the neural field equations about a bump solution. Pre-
vious studies have thus constructed an Evans function for bump
stability by linearizing the neural field equations with a smooth
sigmoid (1.2) and then taking the high-gain limit [23,25,26].
However, the size of perturbations for which the linear theory re-
mains valid vanishes in the high-gain limit, so that the Evans func-
tion approach does not fully capture the piecewise nature of the
dynamics. Indeed, it is well known from the theory of piecewise
smooth ordinary differential equations that fixed point solutions
can abruptly appear or disappear, and the stability of a fixed point
often depends on the properties of a piecewise linear operator [28].
In this paper, we follow a different approach to analyzing bump

stability, in which the piecewise smooth nature of the dynamics
in the high-gain limit is explicitly taken into account. It turns out
that the way in which the piecewise smooth dynamics affects
bump stability is strongly model dependent. In order to illustrate
this, we study the linear stability of bumps in two different
neural networks with piecewise smooth local negative feedback.
In Section 2, bumps in a network with synaptic depression are
examined. We first demonstrate that an Evans function approach
is singular in the high-gain limit and underestimates the ability of
synaptic depression to destabilize a bump. We then show how the
linear stability of a bump can be analyzed in terms of solutions
to a system of pseudo-linear equations, and use this to derive
sufficient conditions for the instability of a bump. In the particular
case of a network with a Mexican hat weight distribution, we
show that sufficiently strong synaptic depression destabilizes a
bump that is stable in the absence of depression. In Section 3, we
study bumps in a network with spike frequency adaptation, which
appears as a dynamic threshold in the firing rate function f . Aswith
the network with depression, an Evans function approach breaks
down in the high-gain limit, and we must resort to specifically

addressing piecewise smoothness in stability calculations. In this
case, we show that for a wide class of infinitesimal perturbations
the activity and adaptation variables decouple in the linear regime,
such that stability with respect to these perturbations can be
determined using a straightforward modification of the standard
Amari spectral equation [6].We find that, in contrast to the stability
analysis based on the high-gain limit of an Evans function [23,25],
all bumps in the network are unstable, regardless of the strength
of adaptation.

2. Neural network with synaptic depression

In this section, we analyze the existence and local stability
of stationary bumps in a one-dimensional neural field model
with synaptic depression. Synaptic depression is the process by
which presynaptic resources such as chemical neurotransmitter or
synaptic vesicles are depleted [29]. It can be incorporated into the
scalar neural field model [6] by introducing a dynamic prefactor q
in the nonlocal term according to [26,27]

τ
∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

q(x′, t)w(x− x′)f (u(x′, t)− θ)dx′,

(2.1a)

∂q(x, t)
∂t

=
1− q(x, t)

α
− βq(x, t)f (u(x, t)− θ). (2.1b)

The factor q(x, t) can be interpreted as a measure of the fraction
of available presynaptic resources, which are depleted at a rate
βf [30,31], and are recovered on a timescale specified by the
constant α (experimentally shown to be 200–800 ms [32,33,30]).
If we assume that the strength of a synapse is reduced by a factor
η = 0.05 − 0.9 of its maximal value in response to a sustained
input of rate f = 1 [32], then a simple steady-state calculation
shows that β ≈ (1 − η)/(ηα) ≈ 0.0001 − 0.1 (ms)−1 for the
given range of values of α. If we take f = Θ then the dynamics
becomes piecewise smooth due to the presence of the Heaviside
function Θ in the dynamical equation for the depression variable
q(x, t). In the following we set the time constant τ = 1 which sets
the unit of time to be of the order 10 ms.

2.1. Existence of bumps

On setting f = Θ , a stationary solution (U(x),Q (x)) of Eq. (2.1)
satisfies the pair of equations

U(x) =
∫
∞

−∞

Q (x′)w(x− x′)Θ(U(x′)− θ)dx′, (2.2)

Q (x) = 1−
αβ

1+ αβ
Θ(U(x)− θ). (2.3)

Let R[U] = {x|U(x) > θ} be the region over which the field is
excited or superthreshold. Exploiting the fact that any solution can
be arbitrarily translated along the x-axis, we define a stationary
bump solution of half-width a to be one for which R[U] = (−a, a).
Substituting Eq. (2.3) into (2.2) then yields

U(x) =
1

1+ αβ
[W (x+ a)−W (x− a)],

W (x) =
∫ x

0
w(y)dy.

(2.4)

As a simple example, we take a Mexican hat weight distribution
given by the function

w(x) = (1− |x|)e−|x|, (2.5)

which models short-range excitation and long-range inhibition
as a function of distance in the connections between neural
populations. Substituting the weight function (2.5) into the steady
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