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Effects of parametric disorder on a stationary bifurcation
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Abstract

Effects of a frozen random contribution to the control parameter are investigated in terms of the complex Ginzburg–Landau equation with real
coefficients. The threshold of the bifurcation from the homogeneous basic state is reduced by a random contribution even with a vanishing spatial
mean value, as shown by three different approaches, by a perturbation calculation, by a self-consistent iteration method and by a fully numerical
solution of the linear part of the Ginzburg–Landau equation. For arbitrary random contributions the nonlinear stationary solutions are numerically
determined and in the limit of small random amplitudes analytical expressions are derived in terms of two different perturbation expansions, which
cover already several related trends beyond threshold. For instance, the spatial modulations of the solutions increase with the noise amplitude, but
decrease with increasing distance from threshold.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern formation is investigated particularly in spatially
uniform systems in order to understand at first the essence
of the underlying basic mechanisms [1,2]. However, real
systems are not always perfectly uniform and include
heterogeneities, which may become nonnegligible in various
situations. Heterogeneities modify a bifurcation scenario
by shifting for instance the threshold and the nonlinear
solution behavior. How strong are such changes and how
robust are generic pattern formation processes with respect
to small inhomogeneities? Above which strength do the
inhomogeneities change the bifurcation behavior qualitatively?
Here we focus on heterogeneity effects on a stationary
bifurcation, where the spatially varying parameters occur
multiplicatively in the respective model equations.

Rayleigh–Bénard convection [3,4] and Taylor–Vortex
flow [3,5] are two systems where the effects of inhomogeneities
have already been investigated rather early. In both systems the
effects of ramps, of periodic modulations, or of statistical dis-
tributed heterogeneities on different aspects of pattern forma-
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tion, such as wavelength selection etc., have been studied [6–
25]. In several of these examples the spatial variation of the
parameters was restricted to one direction [6–17] and in others
either the modulation depends on two spatial variables or the
effects of a one-dimensional modulation on a two-dimensional
pattern was investigated [18–25]. Recently, a number of inves-
tigations about heterogeneity effects were also focusing on the
Turing instability in chemical reactions [26–30], on excitable
media [31–34], or on optical systems [35].

Here, we investigate the influence of a time-independent
and spatially periodic or spatially varying random contribution
to the control parameter on a supercritical bifurcation from a
homogeneous basic state to a spatially periodic state. Close
to the threshold of such a supercritical bifurcation with wave
number qc, a real field u(x, t) may be written as a product of
the fast varying function ∝ eiqcx and the amplitude A(x, t)

u(x, t) = A(x, t)eiqcx
+ A∗(x, t)e−iqcx . (1)

With increasing distance from the threshold higher harmonic
contributions are also needed in order to describe u(x, t).
There are many systems showing a transition to a one-
dimensional periodic state of this type, as for instance the
famous Rayleigh–Bénard convection, the Taylor vortex flow,
electroconvection [36] or the Turing instability. Here we will
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focus on values of the control parameter close to the threshold,
where only long-wavelength modulations of the spatially
periodic function ∝ exp(iqcx) are relevant. Such variations are
commonly described by a slowly varying amplitude A(x, t) of
the periodic pattern given in Eq. (1) for which the well-known
Ginzburg–Landau equation [37,38]

τ0∂t A = εA + ξ2
0 ∂

2
x A − g|A|

2 A (2)

may be derived. Here τ0 is the relaxation time, ε measures
the distance from threshold of the spatially periodic pattern,
ξ0 is the coherence length and the nonlinear coefficient g
determines the amplitude of the pattern as a function of the
control parameter ε, as for instance with A ∝

√
ε/g and g > 0

close to a supercritical (forward) bifurcation. This amplitude
equation is one of the simplest models describing a bifurcation
from an initial state A = 0 to a stationary and spatially varying
pattern A 6= 0. A spatial modulation of the control parameter
ε → ε + M(x), which describes for instance major effects of
a rough container boundary in Rayleigh–Bénard convection as
estimated in Ref. [12], leads to a modification of the bifurcation
as shown in this work. It leads for instance to a shift of the
threshold, but leaves the bifurcation still perfect, whereas an
additive contribution f (x, t) in Eq. (2) makes the bifurcation
imperfect.

In Section 2 we describe the model and three different types
of modulations of the control parameter. The effects of these
modulations on the threshold are calculated in Section 3 by
solving the linear part of Eq. (3) by three different methods,
whereby their strengths and the deficiencies are compared with
each other. In Section 3.1 a perturbation method is employed,
in Section 3.2 a full numerical solution in Fourier space is given
and in Section 3.3 a self-consistent approach is introduced.
Beyond the threshold the dependence of the nonlinear solution
on the distance from the threshold is also changed by the
modulation of the control parameter as described in Section 4.
In Section 4.1 the nonlinear equation is solved numerically for
a typical set of parameters and in Section 4.2 the nonlinear
solutions are determined in the range of small modulation
amplitudes by the Poincaré–Lindstedt expansion. The results
of this expansion are compared with the results obtained
by solving the nonlinear equation numerically. A modified
expansion of the nonlinear solution far beyond threshold is
described in Section 4.3 and the work ends with a discussion
and concluding remarks in Section 5.

2. Model equation

The effects of a time-independent random contribution
M(x) to the control parameter are investigated near a
bifurcation point or phase transition in terms of the complex
Ginzburg–Landau equation with real coefficients

τ0∂t A =

[
ε + M(x)+ ξ2

0 ∂
2
x

]
A − g|A|

2 A. (3)

M(x) is assumed to be either spatially periodic or a random
function, as specified in the following subsection. In addition,
the amplitude of M(x) is assumed to be of the order of ε and

the spatial variation of M(x) is considered to be slow on the
length scale 2π/qc.

2.1. Three types of spatial modulations M(x)

The effects of three different types of the modulation
function M(x) are investigated in this work. Studies of spatially
periodic modulations of the control parameter already have
some tradition [6–15] and some trends to be expected for a
random function M(x) in Eq. (3) can already be investigated
in terms of a periodic function

M(x) = 2G cos(kx). (4)

For a randomly varying modulation M(x) = ξ(x), we assume a
vanishing mean value and a δ-correlated second moment [39]:

〈ξ(x)〉 = 0, (5a)

〈ξ(x)ξ(x ′)〉 = D δ(x − x ′). (5b)

The amplitude D in Eq. (5b) is a measure for the noise intensity,
and the δ-correlation expresses that the random function M(x)
is statistically independent at each location x 6= x ′. The Fourier
transform of the correlation function (5b) is also δ-correlated
〈ξ∗(q)ξ(q ′)〉 = 2πDδ(q − q ′) and otherwise independent of
the wave number.

In a third example we assume an Ornstein–Uhlenbeck
process M(x) = ω(x) in space, where ω(x) is generated by
a white noise ξ(x) via the first order differential equation [39,
40]

∂ω(x)

∂x
= −

ω(x)

`
+
ξ(x)

`
(6)

for different values of the correlation length `. ω(x) is a so-
called colored noise with vanishing mean value, where ω(x)
and ω(x ′) at different sites x 6= x ′ are correlated with an
exponential decay of the correlation on a typical length ` as
follows:

〈ω(x)〉 = 0, (7a)

〈ω(x) ω(x ′)〉 =
D

2 `
e−|x−x ′

|/`. (7b)

The exponential decay in Eq. (7b) leads to a wave number
dependence of its Fourier transformation ω̂(q)

〈ω̂∗(q) ω̂(q ′)〉 =
2πDδ(q − q ′)

1 + `2q2 . (8)

The correlation function of white noise is recovered from Eqs.
(7b) and (8) in the limit ` → 0 by keeping D fixed.

Numerically the model in Eq. (3) may be solved on a finite
number of grid points N with a grid spacing 1x = L/N and
the position x j = j1x of the sites. An alternative approach
is a solution in terms of N Fourier modes, as presented in
Section 2.2. On a discrete lattice the autocorrelation function
of the random process ξ(x) takes the form

〈ξ(xi )ξ(x j )〉 =
D

1x
δi, j , (9)
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