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a b s t r a c t

We study the transport and mixing properties of flows in a variety of settings, connecting the
classical geometrical approach via invariant manifolds with a probabilistic approach via transfer
operators. For non-divergent fluid-like flows, we demonstrate that eigenvectors of numerical transfer
operators efficiently decompose the domain into invariant regions. For dissipative chaotic flows such
a decomposition into invariant regions does not exist; instead, the transfer operator approach detects
almost-invariant sets. We demonstrate numerically that the boundaries of these almost-invariant
regions are predominantly comprised of segments of co-dimension 1 invariant manifolds. For a mixing
periodically driven fluid-like flow we show that while sets bounded by stable and unstable manifolds are
almost-invariant, the transfer operator approach can identify almost-invariant sets with smaller mass
leakage. Thus the transport mechanism of lobe dynamics need not correspond to minimal transport.
The transfer operator approach is purely probabilistic; it directly determines those regions that

minimally mix with their surroundings. The almost-invariant regions are identified via eigenvectors of
a transfer operator and are ranked by the corresponding eigenvalues in the order of the sets’ invariance
or ‘‘leakiness’’. While we demonstrate that the almost-invariant sets are often bounded by segments of
invariant manifolds, without such a ranking it is not at all clearwhich intersections of invariant manifolds
form the major barriers to mixing. Furthermore, in some cases invariant manifolds do not bound sets of
minimal leakage.
Our transfer operator constructions are very simple and fast to implement; they require a sample of

short trajectories, followed by eigenvector calculations of a sparse matrix.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Transport andmixing processes play an important role inmany
natural phenomena and their mathematical analysis has received
considerable interest in the last two decades. Areas of application
include astrodynamics, molecular dynamics, fluid dynamics, and
ocean dynamics; see e.g. [1–4] for discussions of transport
phenomena. Analytical and numerical treatments of transport
typically assume that themotion of a passive particle is completely
determined by an underlying autonomous or nonautonomous
velocity field. A variety of different concepts from dynamical
systems theory may then be used to detect barriers to particle
transport, to explain the transport mechanisms at work, and to
quantify transport in terms of transition rates or probabilities. Two
different families of approaches have been developed in the past
for the analysis of transport and mixing processes in dynamical
systems: (i) geometric methods which make use of invariant
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manifolds and related concepts and (ii) probabilistic techniques
which attempt to approximate so-called almost-invariant sets. One
of the main aims of this work is to demonstrate numerically in a
number of case studies that there is a strong connection between
the two approaches and that the combination of the two types of
analyses leads to a richer understanding of the global dynamics.
The notion that geometrical structures such as invariant man-

ifolds play a key role in dynamical transport and mixing for fluid-
like flows has been around for almost two decades. In autonomous
settings, invariant cylinders and tori form impenetrable dynamical
barriers. This follows directly from the uniqueness of trajectories
of the underlying ordinary differential equation (ODE). Slow mix-
ing and transport in periodically driven maps and flows can some-
times be explained by lobe dynamics of invariant manifolds [5,6,
3]. In non-periodic time-dependent settings, finite-timehyperbolic
material lines [7] and surfaces [8] have beenproposed as barriers to
mixing. Both the theoretical and the numerical analysis of these La-
grangian coherent structures inmixing fluids inmany different ap-
plication areas has been the focus of considerable interest over the
last decade and a half, see e.g. [7–13], and the references therein.
Unions of segments of invariant manifolds may form either

complete or partial boundaries of regions that are completely or

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2009.03.002

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:g.froyland@unsw.edu.au
http://dx.doi.org/10.1016/j.physd.2009.03.002


1508 G. Froyland, K. Padberg / Physica D 238 (2009) 1507–1523

Fig. 1. Connecting the probabilistic and the geometric approaches.

partially dynamically isolated. These dynamically isolated regions
are either invariant sets or almost-invariant sets. One of the
main aims of this work is to demonstrate numerically that the
regions that aremaximally almost-invariant often have boundaries
comprised of segments of invariant manifolds.
Almost-invariant sets arose in the context of smooth maps

and flows on subsets of Rd [14,15] about a decade ago. The main
theoretical and computational tool is the Perron–Frobenius (or
transfer) operator, and almost-invariant sets were estimated
heuristically from eigenfunctions of the Perron–Frobenius opera-
tor. Further theoretical and computational extensions have since
been constructed [16–18]. A parallel series ofwork specific to time-
symmetric Markov processes and applied to identifying molecular
conformations was developed in [19] and surveyed in [19,20]. The
constructions of [20] are transfer operator based and the trans-
fer operator is derived directly from ensemble simulation of the
dynamics. Related ideas have also been developed for finite-state
Markov chains [21,22], where the starting point is a Markov chain
model of some physical system that is similar in spirit to a transfer
operator.
Connections between eigenmodes of evolution operators and

slow mixing in fluid flow have recently begun to appear. Liu
and Haller [23] observe via simulation a transient ‘‘strange
eigenmode’’ as predicted by classical Floquet theory. Pikovsky and
Popovych [24,25] numerically integrated an advection–diffusion
equation to simulate the evolution of a passive scalar, observing
that it is the subdominant eigenmode of the corresponding transfer
operator that describes the most persistent deviation from the
unique steady state. The particular form of flow used in [24,25]
admitted a convenient Fourier series representation that allowed
calculation of leading eigenmodes. The numerical methods we
describe in the present paper can be used to estimate eigenmodes
for flows that are continuous in space and time and require only
the calculation of many short trajectories.
Prior work related to connections between geometric and sta-

tistical objects include [26,27], where ergodic averages of observ-
ables have been used to identify invariant sets in autonomous and
periodically driven fluid-like flows in two and three dimensions.
Connections with finite-time invariant manifolds have been stud-
ied numerically in the aperiodically driven setting [28]. The ap-
proaches [26–28] have the disadvantages of (i) requiring possibly
lengthy integration times and (ii) the ambiguity of selecting an
observable to ergodically average. In contrast, our transfer oper-
ator approach employs relatively short integration times and di-
rectly constructs slow eigenmodes that carry information about
invariant and almost-invariant sets. The first connection between
almost-invariant sets and invariant manifolds appeared in [29],
where graph algorithms were applied to analyse transport in as-
trodynamics. The present paper significantly extends the results
of [29] by treating a wide variety of systems and framing the prob-
abilistic approach in terms of eigenfunctions of transfer opera-
tors rather than graph partitioning. The spectral approach is more
natural, especially under variation of initial flow times and flow

durations and delivers significant benefits in terms of the transfer
operator describing the global dynamics.
In this work via a number of case studies in two and

three dimensions, for autonomous and time-periodic flows, and
for fluid-like and dissipative flows, we compare the geometric,
manifold based decomposition of the phase space with the
decomposition provided by the transfer operator approach. We
will show that the two approaches are largely compatible in the
sense that the manifolds often form at least partial boundaries of
the regions identified by the transfer operator approach. In such
situations the methods are complementary: (see also Fig. 1)
• the probabilistic approach determines which regions are the
most dynamically isolated and therefore which manifold
intersections are themost important in defining the boundaries
of such regions,
• recognising that the boundaries of the almost-invariant regions
are pieces of invariant manifold allows a more detailed
understanding of the dynamics near the boundaries of the sets
and how transport occurs in and out of the almost-invariant
regions.
An outline of this paper is as follows. In Section 2 we provide

background definitions for invariant sets, invariant measures, and
ergodic measures, and summarise the four dynamical settings
we will investigate. In Section 3 we define almost-invariant
sets and the Perron–Frobenius operator. We then describe our
numerical method for producing a finite-rank approximation of
the operator and detail an algorithm for using eigenvectors of
this finite-rank operator to determine almost-invariant sets. In
Section 4 we investigate the connection between the probabilistic
description of coherent structures via almost-invariant sets and
the geometric description using invariant manifolds. Sections 5–8
contain our four major case studies in which we demonstrate
the efficiency of the transfer operator approach in determining
and extracting the largest, most coherent structures. In each case
study we additionally compute major geometrical structures and
demonstrate a high degree of correlation between the geometric
structures and the almost-invariant sets. We find one exception to
this correlation in the second part of our final case study where we
show that lobe related transport need not correspond to minimal
leakage from a set.

2. Background: Flows, invariant sets, and invariant measures

Let M ⊂ Rd be compact and F : M × R → Rd be a smooth
vector field. Let m denote Lebesgue measure, normalised so that
m(M) = 1. We consider the ODE
ẋ = F(x, t). (1)
In the case where F(x, t) = F(x), we will call the ODE autonomous,
otherwise we call it nonautonomous or time-dependent. Let φτ :
M × R → M be the flow, i.e. φτ (x0, t0) is a solution to the ODE
(1) with initial condition x(t0) = x0 and satisfies

dφτ
dτ

(x0, t0)|τ=0 = F(x0, t0), for all x0 ∈ M, t0 ∈ R. (2)
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