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a b s t r a c t

Experimental recordings of the membrane potential of stellate cells within the entorhinal cortex show
a transition from subthreshold oscillations (STOs) via mixed-mode oscillations (MMOs) to relaxation
oscillations under increased injection of depolarizing current. Acker et al. introduced a 7D conductance
based model which reproduces many features of the oscillatory patterns observed in these experiments.
For the first time, we present a comprehensive bifurcation analysis of this model by using the software
package AUTO. In particular, we calculate the stableMMO branches within the bifurcation diagram of this
model, as well as other MMO patterns which are unstable. We then use geometric singular perturbation
theory to demonstrate how the bifurcations are governed by a 3D reduced model introduced by Rotstein
et al. We extend their analysis to explain all observed MMO patterns within the bifurcation diagram. A
key role in this bifurcation analysis is played by a novel homoclinic bifurcation structure connecting to a
saddle equilibrium on the unstable branch of the corresponding critical manifold. This type of homoclinic
connection is possible due to canards of folded node (folded saddle-node) type.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Complex oscillatory patterns known as mixed-mode oscilla-
tions (MMOs) [1] have been recorded experimentally from mam-
malian neurons such as stellate cells within the cortical region
[2,3]. Stellate cells are the most abundant cell type in layer II of
the medial entorhinal cortex. They control information flow to the
hippocampus and they appear to be generators of robust limbic
rhythms in the theta frequency range (4–12 Hz). In vitro electro-
physiological studies [3] show that,whendepolarized, stellate cells
develop subthreshold oscillatory (STO) patterns as well as MMO
patterns, small amplitude STOs interspersed by large amplitude
oscillations. One major challenge is to understand the biophysical
mechanism generating STOs and MMOs in single stellate cells.
The observed oscillatory patterns in stellate cells, STOs and

MMOs, are an intrinsic cell phenomenon. It has been shown in [3]
that these patterns result mainly from the interaction between
two currents: a fast persistent sodium current INap and a slow
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hyperpolarization activated current Ih. In [4], they developed a
single compartment conductance basedmodel incorporating these
currents in addition to standard spiking currents to reproduce
many aspects of the stellate cell dynamics. The model is given by
a system of seven ordinary differential equations. It consists of the
current balance equation

C
dV
dt
= Iapp − INa − IK − I` − Ih − INap (1)

which is defined via Kirchhoff’s law where V is the membrane
potential (mV), C is the membrane capacitance (µF/cm2) and
Iapp is an applied external current (µA/cm2). The sodium current
INa together with the delayed rectifier current IK and the leak
current I` define the standard spiking current, similar to the famous
Hodgkin–Huxley equations [5], while the persistent sodium
current INap and the hyperpolarization activated current Ih are
specific for the STOs of stellate cells. All the ionic currents are
defined via Ohm’s law by

INa = GNam3h(V − ENa) IK = GKn4(V − EK)
I` = G`(V − E`) Ih = Gh(0.65rf + 0.35rs)(V − Eh)
INap = Gpp(V − ENa)

(2)

where the parameters Gy and Ey, y ∈ {Na,K, l, h,Nap}, are the
maximal conductances (mS/cm2) and reversal potentials (mV)
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Fig. 1. A stable 13 mixed-mode oscillation, Iapp = −2.568. The inset shows the
subthreshold oscillations.

respectively. We use parameter values throughout this paper, as
given in [4]. These values can be found in the Appendix.
The conductances of the ionic currents are voltage dependent.

This is modelled via dimensionless gating variables (m, h) for INa,
n for IK, (rf , rs) for Ih and p for INap. Note that the gate h of INa is the
only inactivation gate. All other currents have just activation gates.
For x ∈

{
m, h, n, p, rf , rs

}
, the dynamics of these gates x follow

dx
dt
=
x∞(V )− x
τx(V )

(3)

where x∞(V ), the voltage dependent activation/inactivation
curves, and τx(V ), the voltage dependent time constants, are given
in the Appendix.
Eqs. (1) and (3) define the full seven dimensional model of a

stellate cell (7D SC model). Fig. 1 shows one possible MMO pat-
tern obtained with Iapp = −2.568. In Section 2 we present a com-
prehensive bifurcation analysis of this model using AUTO [6]. To
the best of our knowledge, we calculate, for the first time, MMO
branches within such a bifurcation diagram. We further show that
these branches terminate in novel homoclinic bifurcation points.
This numerical bifurcation analysis is augmented with phase dia-
grams for better understanding.
In Section 3 we introduce a reduced 3D SC model derived in [7]

which describes the dynamics of the full 7D SC model in the
subthreshold regime. We are able to confirm with our bifurcation
analysis that the 3D SCmodel indeed covers the dynamics of the 7D
SC model, since the corresponding bifurcation diagrams (Figs. 10
and 15) show excellent agreement in the subthreshold regime.
Furthermore, this 3D SC model enables us to study the generation
of STOs and MMOs with analytical techniques. In particular, [8]
identified the canard phenomenon [9–14] to be the mechanism
that generates these oscillatory patterns. Here we extend their
work and explain the bifurcations of all MMO patterns, stable
and unstable, in detail. This is based on defining a global return
mechanism for the flow of the 3D SC model that also covers
the unstable MMO patterns in the 7D model. We uncover novel
homoclinic bifurcation points as part of the canard phenomenon
and show how they induce the complicated bifurcation structure.
We relate this bifurcation structure in the 3D SC model to canards
of folded node and folded saddle-node type. Canards of folded node
and folded saddle-node type are also studied in [1,15–20] and have
been identified in other neuronal models as well [21–25]. Finally,
we conclude in Section 4.

1.1. Numerical methods and computational tools

AUTO [6] was used to compute families of periodic orbits in
both stellate cell models (7D and 3D). In the 7D SC model, several
families were computed by continuing the periodic orbits that
arise at a Hopf bifurcation. Other families were computed by first
finding aperiodic orbitwith someother software andusing it as the
starting point in AUTO. For most of the families, the starting point
was found by using an initial value problem solver to implement a
Poincaré map. A stable fixed point of the map was found by simply
iterating until the returnwas sufficiently close to the starting point.

Fig. 2. Bifurcation diagram showing the equilibria and the families of periodic
orbits that arise from Hopf bifurcations. The family labeled 10 arises from a Hopf
bifurcation (near Iapp = 60.7) that is not shown in this figure. Both families
of periodic orbits end as orbits homoclinic to the saddle in the lower branch of
equilibria. The homoclinic bifurcation points are labeled H−0 and H

+

0 .

We used the GNU Scientific Library (GSL) ODE solver [26] for the
initial value problem solver. In a few cases, the starting point for
an AUTO computationwas created by altering a numerical solution
previously generated by AUTO, either by deleting part of the data
or by repeating a part. When computing the periodic orbits in
AUTO, mesh sizes ranging from 100 to 800 points were used, with
up to five collocation points per mesh interval. The large mesh
size was necessary because the problem is singularly perturbed,
and because all the families ultimately converged to homoclinic
orbits. The computation of a family was halted whenever the
period reached 107 time units. We consider such a large period to
be convincing numerical evidence that the family converges to a
homoclinic orbit. Additional maps for the 3D and the 7D SC model
were computed with either GSL or MATLAB.

2. Bifurcations in the 7D SC model

The 7D SC model, (1) and (3), was introduced and studied in [4,
7] but no comprehensive bifurcation analysis was undertaken. We
are the first to present such a bifurcation analysis with respect
to the applied current Iapp. The bifurcation diagram that we have
computed is quite complicated, and is not complete. The system
has chaotic invariant sets, so a complete bifurcation diagram of the
periodic orbits is not possible. We present various pieces of the
bifurcation diagram in stages.

2.1. Equilibria and Hopf bifurcations

We begin with the equilibria. Fig. 2 shows the bifurcation dia-
gram for −3 < Iapp < −1.8. There is a curve of equilibria, with a
subcritical Hopf bifurcation in the upper branch of the curve near
Iapp = −2.7, and a saddle-node bifurcation near Iapp = −2.05. In
the upper branch of equilibria, those to the left of the Hopf bifur-
cation are stable, and those to the right have a two-dimensional
unstable manifold. The equilibria in the lower branch are saddles
with one-dimensional unstable manifolds. Also shown in Fig. 2 are
two families of periodic orbits. One, labeled 01, arises from the sub-
critical Hopf bifurcation near Iapp = −2.7, and the other, labeled
10, comes from another Hopf bifurcation (near Iapp = 60.7) that is
not shown in the figure.
Fig. 3 shows solutions from the 01 family. Near the Hopf

bifurcation, these are small orbits, as expected. The solution
labeled PD is a period-doubling point. The period-doubled family of
solutions that arises from this pointwill be discussed in Section 2.4.
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