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Abstract

The stability of planar fronts to transverse perturbations in bistable systems is studied using the Swift—-Hohenberg model and an urban
population model. Contiguous to the linear transverse instability that has been studied in earlier works, a parameter range is found where planar
fronts are linearly stable but nonlinearly unstable; transverse perturbations beyond some critical size grow rather than decay. The nonlinear front
instability is a result of the coexistence of stable planar fronts and stable large-amplitude patterns. While the linear transverse instability leads to
labyrinthine patterns through fingering and tip splitting, the nonlinear instability often evolves to spatial mixtures of stripe patterns and irregular

regions of the uniform states.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern formation phenomena in bistable systems are
determined to a large extent by front instabilities. Fronts
which are bi-asymptotic to a pair of stable uniform
states can go through transverse instabilities leading to
stationary labyrinthine patterns, or through non-equilibrium
Ising—Bloch (NIB) bifurcations resulting in traveling wave
phenomena such as Bloch spiral waves. The coupling of
the two type of instabilities can induce irregular spatio-
temporal behaviors (“Bloch-front turbulence”) involving
recurrent events of vortex-pair nucleation and annihilation.
Labyrinthine patterns arising from transverse front instabilities
have been observed in the FIS reaction [1] and in the
periodically forced oscillatory Belousov—Zhabotinsky (BZ)
reaction [2]. The forcing in this case was provided by periodic
uniform illumination at a frequency twice as large as the
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system’s oscillation frequency (2:1 forcing). Bloch spiral
waves have been observed in the periodically forced BZ
reaction and in liquid crystals [3,4]. Recent experiments on
the periodically forced BZ reaction have also demonstrated
Bloch-front turbulence [5]. These front instabilities have
been found and analyzed in various models including the
FitzHugh—Nagumo (FHN) model and a variant of the complex
Ginzburg-Landau equation (FCGL) that describes 2:1 periodic
forcing of uniform oscillations [6-9].

Another factor affecting pattern formation in bistable
systems is the possible pinning of fronts between a pattern and
a homogeneous state. Studies of the Swift-Hohenberg (SH)
model in one space dimension showed that self-induced
pinning, due to the oscillatory shape of the front tails, may
prevent a front between a patterned state and a uniform state
from propagating [10,11]. The result is that the evolution of a
pattern in the SH model might not result in a final state with the
lowest free energy.

Bistable systems often arise as a result of symmetry breaking
instabilities of uniform states. This is the case with the FHN
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and the SH models where uniform states lose stability in
pitchfork bifurcations. A different case is the FCGL equation
for 2:1 forcing. The unforced oscillations appear in a Hopf
bifurcation of a stationary uniform solution and correspond
to a continuous family of solutions whose phases span the
whole circle. The 2:1 forcing induces a pair of saddle-node
bifurcations which fix the oscillation phases at two stable
values shifted by m with respect to one another. Quite often
the stationary uniform states, undergoing the zero-wavenumber
pitchfork or Hopf bifurcations, go through finite-wavenumber
instabilities as well. Resonant coupling of the zero and finite-
wavenumber modes can lead to large amplitude patterns
[12-15] observed in various systems [16—19].

In this paper we introduce and study another possible
outcome of the coupling between zero and finite-wavenumber
instabilities — a nonlinear transverse front instability. The
asymptotic patterns that develop differ from those developing
from linear transverse instabilities in that they often contain
regions of uniform states coexisting with stripe domains.
We first demonstrate the nonlinear front instability in two
different models, the SH equation and a population model [20]
(Section 2). We then use the SH equation to study both the
linear and nonlinear transverse front instabilities and map
them along the bifurcation parameter axis (Section 3). We
also find (Section 4) that depinning of a front between a
homogeneous state and a pattern occurs via a zigzag instability
mechanism, which works far more efficiently than one-
dimensional nucleation [10] and greatly reduces the pinning
range.

2. Numerical demonstrations of linear and nonlinear
transverse front instabilities

We consider here two examples of bistable systems, the SH
equation and a population model describing urban segregation
phenomena [20]. In both models front solutions bi-asymptotic
to a symmetric pair of uniform states can become linearly
unstable to transverse perturbations. The asymptotic patterns
resulting from these linear transverse instabilities are stationary
labyrinthine patterns as found in other models such as the
FHN and FCGL. Contiguous to these instabilities in parameter
space, however, there exist parameter ranges where the fronts
are linearly stable but finite-size transverse perturbations still
grow. Depending on initial conditions, the asymptotic patterns
in this case may look like labyrinths that develop from linear
instabilities, or mixtures of stripes and regions of the two
uniform states. We demonstrate these behaviors by numerically
solving the SH equation and the population model.

2.1. The Swift-Hohenberg equation

The SH equation we consider has the form [10,21]
up = eu — (V2 + D2u —u, (1)

where u is a real scalar field and € is the bifurcation control
parameter. The zero solution # = 0 loses stability to finite-
wavenumber perturbations at € = 0, and goes through a
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Fig. 1. Bifurcation diagram of uniform solutions to the Swift-Hohenberg Eq.
(1). The solution u = 0 for € < 0 becomes unstable to finite wavenumber
perturbations at € = 0 and then bifurcates to a pair of nonzero unstable solutions
ate = 1. At € = 1.5 the two nonzero solutions stabilize but fronts between
the two solutions have a linear transverse instability. For € € [eT, €)] fronts
are linearly stable to transverse perturbations but large perturbations grow and
create a patterned state. Above €, the fronts are globally stable.

pitchfork bifurcation at ¢ = 1. The two uniform states, u+
= £+/€ — 1, that appear above ¢ = 1 are unstable to finite-
wavenumber perturbations but become stable above € = 3/2.
Fig. 1 shows a bifurcation diagram of the uniform solutions
and the finite-wavenumber instabilities they go through (with
additional thresholds to be discussed below).

The bistability of uniform states in the range ¢ > 3/2
allows for front solutions approaching wuy asymptotically
as x — Z£oo or x — Foo. These front solutions
are linearly unstable to transverse perturbations up to a
threshold ¢ = €7 to be calculated in the next section. This
linear instability is demonstrated in Fig. 2(a). Beyond €7,
the linear transverse instability disappears; small transverse
perturbations of the front decay out as Fig. 2(b) shows. The
front, however, remains unstable to finite-size perturbations,
implying a nonlinear transverse instability. The instability is
demonstrated in Fig. 2(c) which also shows the asymptotic
pattern that develops — a spatial mixture of parallel stripes
and regions of the two stable uniform states. The nonlinear
transverse instability disappears at a yet higher threshold, €y,
to be calculated in the next section. Fig. 2(d) demonstrates the
global front stability above €3, by showing the retraction of a
pattern state to a planar front.

2.2. A population model

The population model we consider here has been introduced
and studied in the context of segregation phenomena in
residential neighborhoods [20]. It consists of three dynamical
variables, u, v, and s, representing, respectively, the densities
of two distinct populations and the socio-economic status. A
simple version of the model equations, not including non-local
migration, is [20]:

Ur =u —u2+us+V2u—81V2s,
vy :av—vz—ﬁvs+82V2v+83V2s, 2)
st =€ —yv—us) — $s3 + 84V7s.
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