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a b s t r a c t

We report the results of systematic numerical analysis of collisions between two and three stable
dissipative solitons in the two-dimensional (2D) complex Ginzburg–Landau equation (CGLE) with the
cubic–quintic (CQ) combination of gain and loss terms. The equation may be realized as a model of a
laser cavity which includes the spatial diffraction, together with the anomalous group-velocity dispersion
(GVD) and spectral filtering acting in the temporal direction. Collisions between solitons are possible due
to the Galilean invariance along the spatial axis. Outcomes of the collisions are identified by varying the
GVD coefficient, β , and the collision ‘‘velocity’’ (actually, it is the spatial slope of the soliton’s trajectory).
At small velocities, two or three in-phase solitons merge into a single standing one. At larger velocities,
both in-phase soliton pairs and pairs of solitons with opposite signs suffer a transition into a delocalized
chaotic state. At still larger velocities, all collisions become quasi-elastic. A new outcome is revealed by
collisions between slow solitonswith opposite signs: they self-trap into persistentwobbling dipoles, which
are found in two modifications — horizontal at smaller β , and vertical if β is larger (the horizontal ones
resemble ‘‘zigzag’’ bound states of two solitons known in the 1D CGL equation of the CQ type). Collisions
between solitons with a finite mismatch between their trajectories are studied too.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Complex Ginzburg–Landau equations (CGLEs) constitute a vast
class of models for the pattern-formation dynamics and spa-
tiotemporal chaos in one- andmulti-dimensional nonlinear media
combining dissipative and dispersive/diffractive properties [1]. In
particular, stable localized pulses (‘‘dissipative solitons’’ [2]) can
be supported by CGLEs that meet the obvious necessary condi-
tion of the stability of the zero background. This condition rules
out the simplest cubic CGLE, whose one-dimensional (1D) variant
admits well-known exact analytical solutions for solitary pulses
[3]. The stability can be achieved in systems of linearly coupled
equations, with one featuring linear gain and the other — linear
loss [4]. In such a model, exact stable solutions for 1D solitons
are available [5]. Another possibility is to use the CGLE with the
cubic–quintic (CQ) combination of nonlinear terms. For the first
time, the CGLE of the CQ type was introduced by Petviashvili and
Sergeev [6] in the 2D form, with the intention to construct stable
fully localized 2D states. In 1D, stable dissipative solitons of the CQ
CGLE had been later studied in detail [7], including the analysis of
two-soliton bound states [8,9]. Then, stable fundamental solitons
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[10–12] and localized vortices (alias spiral solitons) [12,13] have
been found in 2D and 3D [14] models of the CQ-CGLE type, as well
as in the complex Swift–Hohenberg equation with the CQ nonlin-
earity [15]. Such equations find their most significant physical re-
alization as models of large-area laser cavities, where the CQ com-
bination of the loss and gain is provided by the integration of linear
amplifiers and saturable absorbers [16].
In most of the above-mentioned works [6,8,9,12–15,17],

localized pulses and vortices were obtained as solutions to
isotropic 2D equations. On the other hand, the CGLE which
governs the spatiotemporal evolution of light in the large-
area laser cavity is anisotropic, as it includes ‘‘diffusion’’ (the
spectral filtering) acting only along the temporal variable. The
existence of stable fully localized pulse solutions in the latter
case suggests a possibility of the experimental creation of ‘‘light
bullets’’, i.e., spatiotemporal optical solitons, in the cavities. In
other physical contexts (unrelated to optics), anisotropy of the 2D
CGLEwas introduced in a different form, through unequal diffusion
coefficients in the two perpendicular directions [18].
In Refs. [11], stable spatiotemporal dissipative solitons were

found in the model of the laser-cavity type, based on the following
normalized CGLE with the CQ nonlinearity:

iUZ +
1
2
UXX +

1
2
(β − i)UTT

= −
[
iU + (1− iγ1) |U|2U + iγ2|U|4U

]
. (1)
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Here, Z and X are the propagation and transverse coordinates in
the cavity, and T ≡ t − Z/V0 is, as usual, the reduced time, with t
the physical time and V0 the group velocity of the carrier wave.
Term UXX in Eq. (1) represents the transverse diffraction in the
paraxial approximation, the coefficients accounting for the above-
mentioned spectral filtering, Kerr nonlinearity, and background
linear loss are all scaled to be 1, while β corresponds to the group-
velocity dispersion (GVD). Usually, a necessary condition for the
existence of temporal solitons is β > 0 [19], which implies the
anomalous type of the GVD (in the present model, spatiotemporal
solitons also tend to be more stable at β > 0 [11]). Further,
positive coefficients γ1 and γ2 in Eq. (1) account for the cubic gain
and quintic loss, respectively, which are characteristic features of
CQ models. The third-order GVD was also taken into regard in
Refs. [11], but this term is not considered here, as it does not
essentially affect the results reported below. Because it combines
the diffraction along X and effective diffusion along T , Eq. (1) is
called the diffractive–diffusive CGLE [11].
Once 2D solitons are available, an issue of obvious interest

is to explore collisions between them, provided that they are
mobile, i.e., the equation is Galilean invariant. The 2D CGLE with
no diffusion obviously satisfies this condition, allowing freemotion
of solitons or localized vortices in any direction. This property
was used in Ref. [12] to study collisions between solitons in the
isotropic CQ CGLE, as well as their motion in external potentials.
It was concluded that collisions between fundamental solitons
result in their quasi-elastic passage through each other (with a
resultant increase of the relative velocity), or mutual destruction
of the solitons, or their merger into a single 2D pulse. In the same
model, collisions between vortices demonstrated a quasi-elastic
rebound.
The laser-cavity model based on Eq. (1) features the Galilean

invariance along the X-direction, which means that a moving
solution can be generated from a quiescent one by the application
of the Galilean boost corresponding to arbitrary ‘‘velocity’’ P (in
fact, P is the tilt in the (X, Z) plane):

U (X, T , Z)→ exp
[
i
(
PX − P2Z/2

)]
U (X − PZ, T , Z) . (2)

This possibility suggests to consider collisions of 2D solitons in
this model too. In this work, we report results obtained by means
of systematic simulations of collisions between two and three
solitons in the framework of Eq. (1). In the former case, both
head-on collisions and those with a finite offset (aiming distance)
between trajectories of the two solitons will be studied. In either
case, we consider collisions between in-phase and out-of-phase 2D
solitons (the latter means that they have opposite signs).
In Section 2, we report the results for two-soliton collisions, and

in Section 3 — for interactions between three solitons. Outcomes
of the collisions between two in-phase solitons include the quasi-
elastic passage at large velocities, delocalization in the X-direction
(merger into an expanding quasi-turbulent state) at intermediate
velocities, and merger of slowly moving solitons into a single
stable pulse. A major difference for collisions between out-of-
phase solitons is that, at small velocities, they do not merge into
a single pulse; instead, they may form a new localized object —
a wobbling dipole, i.e., a robust bound state of two solitons with
opposite signs, which feature persistent oscillations relative to
each other in the spatial direction. Moreover, two different species
of the wobbling dipoles are reported below, horizontal and vertical
ones. In the latter case, the out-of-phase solitons, although they
collide head-on, shift in opposite perpendicular directions (along
the T -axis), and eventually form a dipole with a fixed vertical
separation between them. Unlike the results for collisions between
dissipative solitons in the 2D isotropic CGLE [12], in the present
model we have never observed complete destruction (decay) of
colliding solitons. For collisions with a finite aiming distance 1T ,

we identify a critical value of1T which separates interactions and
the straightforward passage. Three-soliton configurations feature
eithermerger into a single pulse, or the transition into a delocalized
chaotic state. In terms of the optical cavities, the various outcomes
of the collisions offer possibilities for the use in all-optical data-
processing schemes.

2. Two-soliton collisions

2.1. The numerical procedure

Eq. (1) was solved bymeans of the 2D split-step Fouriermethod
with 256× 256 modes and periodic boundary conditions in X and
T , for the fixed size of the integration domain in both directions,
|X, T − 10| ≤ 10. The stepsize for the advancement in Z was 0.01.
To generate the first stable 2D pulse boosted to velocity (tilt) P , cf.
Eq. (2), an initial configuration was taken as

U0 (X, T ) = exp
[
−

(
X2 + T 2

)
/4+ iPX

]
, (3)

see the first panel in Fig. 2 below. The numerical integration of
Eq. (1) led to quick self-trapping of the input pulse into a moving
(tilted) dissipative soliton, which is an attractor of the model. The
profile of the established soliton can be seen in the first panels of
Figs. 3, 5 and 7.
Generic results for collisions between the solitons with

velocities ±P can be adequately represented by fixing the cubic
gain and quintic loss coefficients to be γ1 = 2.5, γ2 = 0.5, while
varying P and GVD coefficient β . To generate diagrams presented
below in Figs. 1 and 4, which display outcomes of the collisions, we
changed β and P by small steps, the initial configuration for each
simulation being a stable pulse produced by the simulations at the
previous step.

2.2. Head-on collisions between in-phase solitons

Outcomes of collisions between two identical stable solitons,
set by kicks ±P on the head-on collision course, are summarized
in Fig. 1. Stable solitons exist only for β ≥ βmin ≈ −0.5, which
determines the left-hand edge of the diagram.
The simplest outcome of the collision is the straightforward

quasi-elastic passage of the solitons through each other. We do
not illustrate it by a separate picture, as it seems quite obvious;
as well as in Refs. [11], the solitons keep the mutual symmetry
after the quasi-elastic collision, and demonstrate some increase
of ‘‘velocity’’ P (recall it is actually defined as the tilt of the
soliton’s trajectory in the (X, Z) plane). Moreover, running the
simulations in the domain with periodic boundary conditions, we
observed multiple quasi-elastic collisions between solitons. The
solitons which emerge unscathed from the first collision survive
indefinitely many repeated collisions as well.
With the decrease of the collision velocity, the quasi-elastic

passage is changed by the delocalization. This means that two in-
phase solitons, interacting attractively, merge into a single pulse,
which, however, fails to self-trap into a standing soliton. Instead,
it gives rise to a quasi-chaotic (‘‘turbulent’’) state, that remains
localized in the temporal direction (T ), but features indefinite
expansion along X , see a typical example in Fig. 2. This outcome
maybe explained by the fact the fused state has toomuch ‘‘intrinsic
inertia’’, imparted by original velocities ±P , which pushes the
pulse to expand.
At still smaller values of P , the collision also gives rise tomerger

of the two solitons into a single pulse. However, in that case,
the decrease of the above-mentioned ‘‘intrinsic inertia’’ allows the
fused pulse to form a stable soliton, see a typical example in Fig. 3.
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