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Recent advances in the numerical solution of Riemann-Hilbert problems allow for the implementation
of a Cauchy initial-value problem solver for the Korteweg-de Vries equation (KdV) and the defocusing
modified Korteweg-de Vries equation (mKdV), without any boundary approximation. Borrowing ideas
from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically
accurate. The method is straightforward for the case of defocusing mKdV due to the lack of poles in
the Riemann-Hilbert problem and the boundedness properties of the reflection coefficient. Solving KdV
requires the introduction of poles in the Riemann-Hilbert problem and more complicated deformations.
The introduction of a new deformation for KdV allows for the stable asymptotic computation of the
solution in the entire spacial and temporal plane. KdV and mKdV are dispersive equations, and this method
can fully capture the dispersion with spectral accuracy. Thus, this method can be used as a benchmarking
tool for determining the effectiveness of future numerical methods designed to capture dispersion. This
method can easily be adapted to other integrable equations with Riemann-Hilbert formulations, such as
the nonlinear Schroédinger equation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider the initial-value problem on the whole line for the
Korteweg-de Vries equation (KdV)

qc + SQQX + Quxx = 0,
q(x,0) = qo(x) € 3(R),

be thought of as dispersive regularizations of the Burgers and
modified Burgers equations, respectively.

The presence of dispersion makes the approximation of
solutions of KdV and mKdV through numerical methods especially
(1.1) difficult; see Section 2 for a detailed discussion. To see this

qualitatively, in Fig. 1 we approximate the solution of KdV with
q(x, 0) = Asech?(x), where A = 3.2 using the numerical scheme

where subscripts denote partial differentiation and §(R) is the
Schwartz class on R [1, Definition 4.2.1]. We also consider the
defocusing modified Korteweg-de Vries equation (mKdV), given
by

qr — GCIZCIX + Qox = 0, (1-2)
q(x,0) = go(x) € 8(R).

KdV describes the propagation of long waves in dispersive media,
e.g., long surface water waves [2]. Historically, KdV is the first
known case of a partial differential equation (PDE) that is solvable
by the inverse scattering transform [3]. KdV and mKdV can also
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presented here. With A = 3, the solution would be a two-soliton
solution without any dispersive tail [4]. Notice that a significant
dispersive tail forms even though the solution is close to the soliton
case. The issue becomes worse when we consider solutions that are
farther from a soliton solution; see Fig. 2.

To combat this dispersive complication, we exploit the
integrability of KdV and mKdV and evaluate the inverse scattering
transform (IST) numerically. It is important to note that more
conventional methods are also applicable to other dispersive
equations that may not be integrable, whereas our method
requires integrability. Computing the IST involves developing
techniques to compute the forward transform (direct scattering)
and the inverse transform (inverse scattering). Our approach
to direct scattering employs collocation methods and existing
spectrum approximation techniques. For inverse scattering we
use the numerical method for Riemann-Hilbert problems (RHPs)
presented in [5]. After deforming the RHP in the spirit of Deift
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Fig. 1. Numerical solution of KdV with initial data that is close to a two-soliton solution. (a) Initial condition. (b) Solution at t = 1.5. (c) Dispersive tail at t = 1.5.
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Fig. 2. Numerical solution of KdV which is far from a pure soliton solution. (a) Initial condition obtained by adding a soliton to the Riemann-Hilbert problem associated
with q(x, 0) = —2.3 sech?(x). (b) Solution at t = 1.5.(c) A contour plot showing the birth of the dispersive tail. (d) Solution at t = 30. It is not practical to use conventional

methods to capture this solution for longer times.

and Zhou [6-8], the numerical method becomes asymptotically
accurate: the work required to compute the solution at a point to a
desired accuracy is bounded for all x and t. In this method the roles
of x and t are reduced to that of parameters. No time-stepping or
spatial discretization is needed, and the code could easily be run in
parallel.

We start at points bounded away from with background
material concerning RHPs and their numerical solution. The

numerical direct and inverse scattering for defocusing mKdV is
then presented along with numerical results. The RHP for mKdV
has a simple form and the deformations are straightforward. Next,
KdV is considered. Now one has to deal with the addition of
solitons to the problem. After deformation, the RHP for KdV has
a singularity, and this requires two additional deformations. We
introduce a new deformation that is not present, to our knowledge,
in the existing literature. This new transition region allows for
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