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A regularized model equation for discrete breathers in anharmonic lattices
with symmetric nearest-neighbor potentials
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Abstract

We propose a regularized continuum model equation for describing discrete breathers or intrinsic localized modes in one-dimensional
anharmonic lattices with symmetric nearest-neighbor potentials. Exact stationary breather solutions with purely hard quartic anharmonicity, as
well as approximate stationary breather solutions in the general case, are found. The application of the multiple scales analysis indicates the
movability of the small-amplitude breather solutions. The results of numerical simulations for the model equation fully support the analytical
solutions. As regards the breather–breather collisions, the continuum model shares many common features with its discrete counterpart, which
provides an opportunity to clarify the energy exchange mechanism for collisions between discrete breathers in lattices.
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Keywords: Regularized continuum model; Padé approximation; Fermi–Pasta–Ulam lattice; Discrete breather; Intrinsic localized mode; Movability; Multiple scales
method; Breather–breather collision

1. Introduction

Since the discovery of intrinsic localized modes (ILMs) or
discrete breathers (DBs) in Fermi–Pasta–Ulam (FPU) lattices
in the late 1980s [1,2], they have been a topic of increasing
focus in view of their significant role in energy localization
and transport. DBs are stable time-periodic, highly spatially
localized nonlinear modes in discrete lattices, which have been
recently observed experimentally in various physical contexts
such as coupled optical waveguides [3], Josephson junction
ladders [4], antiferromagnet crystals [5], and micromechanical
oscillator arrays [6]. A rapidly increasing number of theoretical
and numerical studies have been piled up in order to clarify
the fundamental properties of ILMs/DBs (see, e.g., the review
papers [7–9] and the references therein).

The discreteness of space is a crucial factor for the stabil-
ity of intrinsic localized modes. The importance of treating the
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discreteness directly has been recognized and emphasized in
the study of intrinsic localized modes. However, it is usually
difficult to carry out a general analysis for a nonlinear discrete
system, whereas a quasi-continuum approximation can provide
an opportunity to understand many general features of the dis-
crete system, because the resulting partial differential equation
is more amenable to some analytical and numerical studies.

As a matter of fact, many efforts have been made
in this respect [10–12], for which Rosenau developed a
systematic methodology for providing continuum approaches
to discreteness that makes the present work possible. However,
it should be pointed out that several model equations obtained
by Rosenau [10] are better approximations to acoustic waves
of long wavelength than to optical waves of short wavelength.
It is known that intrinsic localized modes belong to optical-
like wave excitations. Therefore, it is understandable that
these models are inappropriate for describing intrinsic localized
modes. On the other hand, Kosevich, by a direct Taylor
expansion around the Brillouin-zone edge, derived an envelope-
function equation for the optical wave excitations in a discrete
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lattice [11]. However, due to the lack of regularity, the
resulting model equation is ill-posed and numerically unstable.
Furthermore, as far as we are aware, no breather-like solutions
have been found based on Kosevich’s model.

In the present paper, we propose a regularized model for
describing DBs in one-dimensional anharmonic lattices with
symmetric nearest-neighbor potentials. As discussed in detail
in a subsequent section, we derive our regularized model by
applying the so-called staggering transformation firstly to the
relative displacement so that the linear spectrum is shifted to
the edge of the Brillouin zone, and then the Padé approximation
is applied for the envelope of DBs. Thus the quasi-continuum
approximation is applied for the envelope such that the spatial
variable of the regularized equation has a slow scale different
from the original lattice scale. It is shown that the regularized
model has two conservation laws, and admits stationary
breather solutions in the Fermi–Pasta–Ulam-β atomic lattices.
Moreover, a moving breather solution in the small-amplitude
limit is obtained by means of the multiple scales method,
which can be viewed as an explanation for the movability of
intrinsic localized modes in anharmonic lattices. The results
of numerical simulations for breather–breather collisions show
that they can survive from the collision in most of the cases
and share many features with its discrete counterpart. As a
result, the approach in the present paper sheds some light on
the clarification of some open problems, such as the predictions
of the moving DBs and the fundamental features of collisions
between DBs from further analysis of the regularized model.
On the other hand, it should be pointed out that some inherent
features of the discrete system, such as the Peierls–Nabarro
(PN) barrier [13] and the periodicity in the dispersion relation,
are lost in the process of discrete–continuum transition.

The paper is organized as follows. In Section 2, a regularized
model equation for one-dimensional anharmonic lattices with
symmetric nearest-neighbor interaction potentials is derived.
In Section 3, stationary and moving breather solutions are
found by means of a rotating wave approximation (RWA) and a
multiple scales method, respectively. Section 4 is devoted to the
various numerical simulations for the regularized model for the
purpose of verifying the validity of the model and exploring the
breather–breather collision properties. The numerical results of
the continuum model not only confirm the analytical results in
many respects, but also agree with the numerical results for the
discrete breathers and the collision properties of two DBs in the
FPU-β lattice. The paper is concluded by a discussion.

2. Regularized model equation

We start with a one-dimensional monatomic chain interact-
ing via a nearest-neighbor potential. The Hamiltonian is given
by

H =

∑
n

[
1
2

ẏ2
n + Φ(yn+1 − yn)

]
, (1)

where yn is the displacement of the n-th particle from its equi-
librium position. Φ is the interaction potential between adjacent
particles possessing the symmetric property Φ(−u) = Φ(u).

It is noted here that both the temporal and spatial variables
are normalized by the mass and the spacing of particles (t →

t/
√

m, yn → yn/h) such that they can be scaled to unit one.
From Eq. (1), the equations of motion turn out to be of the

form

ÿn = T (yn+1 − yn) − T (yn − yn−1), (2)

or can be expressed, in terms of the relative displacement rn =

yn − yn−1, by

r̈n = T (rn+1) − 2T (rn) + T (rn−1). (3)

Here T (u) ≡ ∂uΦ(u) is, obviously, an odd function.
As the discrete breathers are short-wavelength excitations of

the chain with wavenumber κ ∼ π/h (h is the lattice spacing,
scaled to 1), i.e., near the edge of the Brillouin zone, it is
convenient to introduce the so-called staggering transformation:
u(n) = (−1)nr(n), through which Eq. (3) becomes

ün + T (un+1) + 2T (un) + T (un−1) = 0. (4)

As a matter of fact, the staggering transformation implies
a shift of π/h is for the spatial wavenumber so that u(n) can
be assumed to be slowly varying on the interatomic scale for
the optical-like vibration. Thus, u(n) becomes appropriate for
the quasi-continuum approximation. Denoting the derivative
with respect to the spatial variable x by Dx , using the fact
un±1 = exp(±Dx )u(x) = u(x) ± Dx u +

1
2 D2

x u + · · ·, we
can introduce the following approximation:

T (un+1) + 2T (un) + T (un−1) ≈ (4 + D2
x )T (u)

≈
4T (u)

1 − D2
x/4

. (5)

Here, the Padé approximation is used as suggested by Rosenau
[10]. By means of (5), discrete system (4) is converted into a
partial differential equation (PDE) as follows:

ut t −
1
4

uxxtt + 4T (u) = 0. (6)

We call Eq. (6) a regularized model equation for the discrete
breathers, because we apply a regularizing technique to derive
(6), similar to the one used in obtaining the improved
Boussinesq equation and the regularized long wave (RLW)
equation [14].

Eq. (6) is derivable from the Lagrangian density

L =
1
2

u2
t +

1
8

u2
xt − 4Φ(u). (7)

Multiplying Eq. (6) by ut and ux respectively, and integrating
by parts yields two conservation laws:∫ (

1
2

u2
t +

1
8

u2
xt + 4Φ(u)

)
d x = E, (8)∫

ux

(
ut −

1
4

uxxt

)
d x = P. (9)

Here we call the above two conserved quantities the energy, E ,
and the momentum, P , respectively. The corresponding energy
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