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ABSTRACT

We investigate the self-similar evolution of the transient energy spectrum, which precedes the
establishment of the Kolmogorov spectrum in homogeneous isotropic turbulence in three dimensions
using the EDQNM closure model. The transient evolution exhibits self-similarity of the second kind and
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has a non-trivial dynamical scaling exponent, which results in the transient spectrum having a scaling
that is steeper than the Kolmogorov k~>/3 spectrum. Attempts to detect a similar phenomenon in DNS
data are inconclusive, owing to the limited range of scales available.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction to transient spectra in turbulence

Although a large amount of work has been done characterising
the properties of the Kolmogorov k—>/3 spectrum of three
dimensional turbulence, rather less attention has been paid to the
transient evolution that leads to its establishment. This transient
evolution is essentially non-dissipative, since it describes the
cascade process before it reaches the dissipation scale. Part of the
reason why this process has attracted relatively little attention
is that this transient evolution is very fast, typically taking place
within a single large eddy turnover time. It is thus of little
relevance to the developed turbulence regime of interest in many
applications. Nevertheless, one may ask whether this developing
turbulence, as one might call this transient regime, displays any
interesting scaling properties. Previous studies of the developing
regime in weak magnetohydrodynamic (MHD) turbulence [1]
suggest that this transient regime might have non-trivial scaling
properties; in this case it was found that the establishment of the
Kolmogorov spectrum is preceded by a transient spectrum that is
steeper than the Kolmogorov spectrum. The latter is, in turn, set
up from right to left in wavenumber space only after the transient
spectrum has reached the end of the inertial range and has started
to produce dissipation.

Subsequent studies suggest that this behaviour, in particular
the occurrence of a non-trivial dynamical scaling exponent, is typ-
ical for turbulent cascades which are of finite capacity—meaning
that the stationary spectrum can only contain a finite amount of
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energy. The Kolmogorov spectrum of three dimensional turbu-
lence is in the class of finite capacity systems, as we shall see
below. There are, however, examples of other turbulent cascades
which are not; infinite capacity cascades are common in wave tur-
bulence for example [2]. In addition to the MHD cascade men-
tioned above, examples of non-trivial scaling exponents in finite
capacity cascades have been found in developing wave turbulence
[3,4], Bose-Einstein condensation [5,6] and cluster—cluster aggre-
gation [7]. Although a possible heuristic explanation of the tran-
sient scaling in the MHD context has been put forward in [8], this
heuristic relies heavily on the anisotropy of the MHD cascade and
does not seem readily generalisable to other contexts. In general,
the transient exponent is associated with a self-similarity problem
of the second kind [9]. From a mathematical point of view, its solu-
tion requires solving a nonlinear equation in which the exponent
appears as a parameter which is fixed by requiring consistency
with boundary conditions. It is probably unrealistic to expect that
there is a general heuristic argument capable of resolving such a
mathematically challenging problem. This is not to say, however,
that particular cases may not be amenable to heuristic arguments
that take into account the underlying physical mechanisms driving
the transient evolution rather than taking a purely mathematical
point of view.

This issue has not yet been studied in the context of homo-
geneous isotropic turbulence. Investigations of transient spectra
in the classical Leith closure model [10] have suggested, how-
ever, that the transient spectrum of developing homogeneous
isotropic turbulence is indeed non-trivially steeper than k—>/3[11].
In this work, we investigate the transient evolution of homoge-
neous isotropic turbulence using the eddy-damped quasi-normal
Markovian (EDQNM) closure model and direct numerical simula-
tion (DNS) of the Navier-Stokes equation.

The transient spectrum might be expected to evolve self-
similarly. In other words there is a typical wavenumber, s(t), which
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grows in time, and a dynamical scaling exponent, a, such that

E(t) < cs(t)‘F(§) where& = L (1)
s(t)

Here =< denotes the scaling limit: k — oo, s(t) — oo with &
fixed and c¢ is an order unity constant which ensures that
Ex(t) has the correct physical dimensions, L3T~2. As we shall
see, if the exponent, (5 + a)/2, is greater than 1, then the
characteristic wavenumber diverges in finite time corresponding
to a cascade which accelerates “explosively”. The direct cascade
in 3D turbulence is of this type. The characteristic wavenumber is
most easily defined as a ratio of moments of the energy spectrum.
Let us define

M, (t) = / ~ K'E; (t) dk. )
0

Eq. (1) suggests that the ratio M,,11(t)/M,(t) is proportional to s(t)
so that we may define a typical scale intrinsically by

Mn+1 (t)
My(t)

A little caution is required: we must take n sufficiently high
to ensure that the moments M,(t) used in defining the typical
scale, converge at zero. Otherwise, the integral is dominated by the
initial condition or forcing scale and does not capture the scaling
behaviour. In this paper, we mostly take n = 2, which turns
out to be sufficient for our purposes, although we will compare
the behaviour obtained forn = 2 and n = 3 in our numerical
simulations to assure the reader that the picture is consistent.

We would like to emphasise that the self-similar transient
dynamics which we study in this paper occur before the onset of
dissipation. This is in contrast to the transient dynamics describing
the long time decay of homogeneous isotropic turbulence after
the onset of dissipation which are also believed to exhibit self-
similarity. See [ 12] for recent experiments and a review of previous
work. Some numerical results on the long time transient dynamics
of the EDQNM model can be found in [13]. The pre-dissipation
transient occurs very quickly. Indeed, as we shall see, the typical
scale, s(t), in this regime diverges as s(t) ~ (t* —t)? where t* is the
time at which the onset of dissipation occurs (typically less than a
single turnover time) and b < 0. For finite Reynolds number, this
singularity is regularised by the finiteness of the dissipation scale.
The fact that, in the limit of infinite Reynolds number, the typical
scale can grow by an arbitrary amount in an arbitrarily small time
interval as t* is approached explains the statement often found in
the literature that the Kolmogorov spectrum is established quasi-
instantaneously in the limit of large Reynolds number.

sp(t) = (3)

2. The EDQNM model

In this section we examine the self-similar solutions of the
EDQNM model [14]. The structure of the EDQNM model can be
obtained in different ways. One way is starting from the Quasi-
Normal assumption [15]. Another way is by simplifying the Direct
Interaction Approximation [16] which was obtained by applying
a renormalised perturbation procedure to the Navier-Stokes
equation. It is thus directly related to the Navier-Stokes equation,
unlike the Leith model which was heuristically proposed to capture
some features of the nonlinear transfer in isotropic turbulence.
However, recent work [17] showed that the structure of the Leith
model can be obtained by retaining a subset of triad interactions
involving elongated triads from closures like EDQNM. EDQNM
containing a wider variety of triad interactions, it is able to capture
more details of the actual dynamics of Navier-Stokes turbulence,
as for example illustrated in [18]. At the same time it has the

advantage over DNS that much higher Reynolds numbers can be
obtained.

The EDQNM model closes the Lin equation by expressing the
nonlinear triple correlations as a function of the energy spectrum,

oE

— =TIE] - 2vKE, (4)
at

where v is the viscosity and T[E;] represents the nonlinear
interactions between different scales. T [E;] has the form

T[E] = / dkqdky Ty k1, k(k1k2) ™ Exy (KPEx, — K{ER), (5)
A

where A signifies that the region of integration is over all values
of ki and k, for which the triad (k, k1, k;) can form the sides of a
triangle and the interaction strength of each triad, Ty k, k,. is given
by

1—exp [—(uk + My + iyt ]
Mk + kg + Lk,

where 6, 61 and 6, are the cosines of the angles opposite to k, k;
and k; respectively in the triangle formed by the triad (k, k1, k;)
and

k
pk = vk* + A,// p2E, dp, (7)
0

is the timescale associated with an eddy at wavenumber Kk,
parameterised by the EDQNM parameter, A, which is chosen equal
t00.49, [19]. For a full discussion of the origins and properties of the
EDQNM model see [20,21]. We concern ourselves here only with
the inviscid limit where v — 0.

If we substitute the scaling ansatz, Eq. (1) into Eq. (4) withv = 0
then, in the scaling limit, the nonlinear transfer term becomes

(6)

ky ,
Ti sy ky = ?(erkl +6,)

homogeneous of degree 2£3¢ in s and one finds
ds 5+a
— =./cs 2 8
" Ve (8)
Foe S —1ir) ©)
aF — & — = .
dg

Scaling alone does not determine the dynamical exponent a. To
determine a we may attempt to impose conservation of energy on
the scaling solution to obtain a second constraint which will fix a.
Let us go down this path, at first naively, and then reconsider our
argument more carefully:

1. Forced case.

If we consider forced turbulence, then energy is injected into
the system in a narrow band of low wavenumbers (which
necessarily lie outside of the region of applicability of the
scaling solution). The total energy grows linearly in time
(remember we are interested in the dynamics before the onset
of dissipation): f0°° Ex(t) dk = et. If we use the scaling ansatz,
Eq. (1), differentiate with respect to time and rearrange we
obtain

ds *° !
— [(a+ l)c/ F(g)dg-‘] s (10)
dt 0

Taken together with Eq. (8) we are led to expect

5
a= —3 for forced turbulence. (11)
The same conclusion would be reached by dimensional analysis
of Eq. (1) under the assumption that the sole parameter avail-
able is the energy flux, €, (having physical dimension L>T~3).
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