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a b s t r a c t

We apply the adjoint continuation method to construct highly accurate, periodic solutions that are
observed to play a critical role in the multi-pulsing transition of mode-locked laser cavities. The method
allows for the construction of solution branches and the identification of their bifurcation structure.
Supplementing the adjoint continuationmethodwith a computation of the Floquet multipliers allows for
explicit determination of the stability of each branch. This method reveals that, when gain is increased,
themulti-pulsing transition starts with a Hopf bifurcation, followed by a period-doubling bifurcation, and
a saddle–node bifurcation for limit cycles. Finally, the system exhibits chaotic dynamics and transitions
to the double-pulse solutions. Although this method is applied specifically to the waveguide array mode-
locking model, the multi-pulsing transition is conjectured to be ubiquitous and these results agree with
experimental and computational results from other models.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

High-power pulsed lasers are an increasingly important tech-
nological innovation. Their conjectured and envisioned applica-
tions, ranging frommilitary devices and precision medical surgery
to optical interconnection networks [1], have grown significantly
over the past two decades. Such lasers are one of the few exam-
ples of a commercially viable photonics technology that are based
fundamentally on nonlinear processes. As a result, mode-locking
technologies have placed a premium on the engineering and op-
timization of laser cavities that are aimed at producing output
pulses of tens to hundreds of femtoseconds with maximal peak
powers in the kilowatt range and energies exceeding 10 nJ. Such
technological demand has pushed mode-locked lasers to the fore-
front of commercially viable, nonlinear photonic devices. One of
themost recently envisionedmethods for generating stablemode-
locking incorporates the intensity discrimination induced by the
nonlinear mode-coupling properties in a waveguide array [2–6].
Thewaveguide arraymode-locking produces robust mode-locking
and displays the ubiquitous multi-pulsing transition instability
[7,8] whereby an increase in the laser cavity energy above a given
threshold causes a single-pulse per round trip to bifurcate to two
pulses per round trip. Thismulti-pulsing transition dynamics is the
primary focus of this manuscript.

Fig. 1 illustrates two possible mode-locking configurations in
which the waveguide array provides the critical effect of intensity
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discrimination (saturable absorption) [1,9]. In Fig. 1(a), a linear
cavity configuration is considered whereas in Fig. 1(b), a ring
cavity geometry is considered. In either case, the waveguide array
provides an intensity dependent pulse shaping by coupling out low
intensity wings to the neighboring waveguides through a process
called nonlinear mode-coupling.

Optical nonlinear mode-coupling (NLMC) is a well-established
phenomenon that has been both experimentally verified [10–14]
and theoretically characterized [15–17]. NLMC has been an area
of active research in all-optical switching and signal processing
applications using waveguide arrays [11–14], dual-core fibers
[10,15,16], and fiber arrays [18,19]. It is only recently that
the temporal pulse shaping associated with NLMC has been
theoretically proposed for the passive intensity-discrimination
element in a mode-locked fiber laser [2,3]. The models derived
to characterize the mode-locking consist of two governing
equations: one for the fiber cavity and a second for the
NLMC element [2,3] (see Fig. 1). Although the two discrete
components provide accurate physical models for the laser cavity,
characterizing the underlying laser stability and dynamics is often
analytically intractable. Thus, it is helpful to construct an averaged
approximation to the discrete components model in order to
approximate and better understand the mode-locking behavior.
Indeed, the essence of Haus’ master mode-locking theory [1] is
approximating discrete elements with a continuous model. The
same approach is used here to generate a continuous system
of governing equations from a system that would, due to the
inclusion of thewaveguide array and Erbium fiber, include discrete
effects [4,5].

Even with these continuous models, such as the waveguide ar-
ray mode-locking model (WGAML) [2–5] used in this manuscript,
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Fig. 1. Two possible laser cavity configurations that include nonlinear mode-
coupling from thewaveguide array as themode-locking element. The fiber coupling
in and out of thewaveguide array occurs at the centralwaveguide as illustrated. Any
electromagnetic field that is propagated into the neighboringwaveguides is ejected
(attenuated) from the laser cavity. In addition to the basic setup, polarization
controllers, isolators, and other stabilizationmechanismsmay be useful or required
for successful operation.

an accurate characterization of the bifurcation structure had not
been performed. Specifically, little was known about the branch
of observed z-periodic breather solutions. A recent study towards
qualitative understanding of the bifurcation process involves ap-
proximating the bifurcation sequence qualitatively using principal
components in a low-dimensional reduction [6].

In this work, we use a hybrid numerical method, called the
adjoint continuation method (ACM), that is able to calculate
arbitrarily accurate solutions and perform a PDE bifurcation study.
In particular, the method reveals the key aspects about and
the complexity of the bifurcation structure of the multi-pulsing
instability, an overview of which is shown in Fig. 2. The branches
of solutions believed to be involved in the multi-pulsing transition
can be separated into four qualitatively different types: stationary
one-pulse (single-pulse) solutions, period-one breather solutions,
period-two breather solutions, and stationary two-pulse (double-
pulse) solutions with an example of each shown in the bottom
of Fig. 2. The stationary one- and two-pulse solutions possess a
constant amplitude with a linearly increasing phase. The period-
one breather solutions have a z-periodic amplitude and are even
functions over the entire period up to a translation in t . The period-
two breather solutions are also z-periodic in amplitude, but they
are neither even nor odd functions for the entire period.

By studying the stability of solution branches, we find that
a subcritical-Hopf bifurcation occurs on the one-pulse solution
branch, at the point labeled H in Fig. 2. This generates a branch of
period-one breather solutions. This period-one (breather) branch
first undergoes a saddle–node bifurcation (SN1) which is followed
by a period-doubling bifurcation (PD). This period-doubling
bifurcation creates the branch of period-two breather solutions.
The period-two solution branch undergoes three bifurcations,
labeled SN2, B, and SN3, and eventually leads to complex spatio-
temporal (chaotic-like) behavior. Coexisting with these solution
branches is a stationary two-pulse solution branch. This bifurcation
diagram represents the underlying nonlinear phenomenon of the
multi-pulsing transition dynamics. A detailed account of each
solution branch and its complex transitions is developed herein.
These results extend and justify the results of previous qualitative
efforts in [6] and also have revealed new information about the
source of symmetry breaking. Further our results hint at the
mechanism for the onset of spatial–temporal disorder in the
WGAML, and they are also consistent with recent experimental
observations of the transition dynamics in laser cavities [20,21].

Fig. 2. (Color online) (Top) Bifurcation diagram including the branches of
stationary one-pulse, stationary two-pulse, period-one breather, and period-two
breather solutions. Branches in blue or green are linearly stable while branches
in red are linearly unstable. Branches in solid lines are from stationary (constant
amplitude) solutions while branches in dashed lines are z-periodic solutions. The
green dashed lines represent period-two breathers and the blue lines period-one.
Hopf, saddle–node, and period-doubling bifurcations are denoted by H, SN , and PD
respectively. A fourth unknown bifurcation is indicated by B. (Bottom) Examples of
the four qualitatively different solution behaviors – stationary one-pulse (single-
pulse) solutions, period-one breathers, period-two breathers, and stationary two-
pulse (double-pulse) solutions – observed during the multi-pulsing transition. The
stationary two-pulse solutions can be treated as two non-interacting stationary
one-pulse solutions.

The paper is arranged as follows: Section 2 gives a brief
overview of the governing averaged equations in the laser cavity.
Section 3 develops the algorithm necessary for computing solution
branches and following bifurcations to new paths of solutions. The
bifurcation structure of the waveguide array mode-locked laser is
given in Section 4. A brief summary and outlook for the method
and the laser system is given in Section 5.

2. Governing equations

When placed within an optical fiber cavity, the pulse shaping
mechanism of the waveguide array leads to stable and robust
mode-locking [2,3]. In its simplest form, the nonlinear mode-
coupling is averaged into the laser cavity dynamics [5]. Numerical
simulations have shown that the fundamental behavior in the
laser cavity does not change when considering more than five
waveguides [5]. Further simplifications to the five waveguide
model can be achieved by making use of the symmetric
nature of the coupling and lower intensities in the neighboring
waveguides [4]. The resulting approximate evolution dynamics
describing the waveguide array mode-locking model (WGAML) is
given by
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