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a b s t r a c t

Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables
that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a
manner that parallels the classification of ordinary or partial differential equations. Solutions to certain
conservative BDEs exhibit growth of complexity in time; such BDEs can be seen therefore as metaphors
for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple
equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil’s staircases and
‘‘fractal sunbursts.’’ All known solutions of dissipative BDEs have stationary variance. BDE systems of this
type, both free and forced, have been used as highly idealized models of climate change on interannual,
interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficientmodels of
colliding cascades of loading and failure in earthquake modeling and prediction, as well as in genetics. In
this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid-
earth problems. The former have used small systems of BDEs, while the latter have used large hierarchical
networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in
space (‘‘partial BDEs’’) and discuss connections with other types of discrete dynamical systems, including
cellular automata and Boolean networks. This research-and-review paper concludes with a set of open
questions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

BDEs constitute a modeling framework especially tailored for
the mathematical formulation of conceptual models of systems
that exhibit threshold behavior, multiple feedbacks and distinct
time delays [1–4]. BDEs are intended as a heuristic first step on
the way to understanding problems too complex to model using
systems of partial differential equations at the present time. One
hopes, of course, to be able to eventually write down and solve the
exact equations that govern the most intricate phenomena. Still,
in the geosciences as well as in the life sciences and other natural
sciences, much of the preliminary discourse is often conceptual.
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BDEs offer a formal mathematical language that may help to
bridge the gap between qualitative and quantitative reasoning.
Besides, they are fun to play with and produce beautiful fractals by
simple, purely deterministic rules. Furthermore, they also provide
an unconventional view on the concepts of non-linearity and
complexity.
In a hierarchical modeling framework, simple conceptual

models are typically used to present hypotheses and capture
isolated mechanisms, while more detailed models try to simulate
the phenomena more realistically, and test for the presence
and effect of the suggested mechanisms by direct confrontation
with observations [5]. BDE modeling may be the simplest
representation of the relevant physical concepts. At the same
time, new results obtained with a BDE model often capture
phenomena not yet found by using conventional tools [6–8].
BDEs suggest possible mechanisms that may be investigated
using more complex models once their ‘‘blueprint’’ is detected
in a simple conceptual model. As the study of complex systems
garners increasing attention and is applied to diverse areas — from
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Fig. 1. The place of BDEs within dynamical system theory. Note the links: the
discretization of t can be achieved by the Poincaré map (P-map) or a time-onemap,
leading from Flows to Maps. The opposite connection is achieved by suspension.
To go from Maps to Automata we use the discretization of x. Interpolation and
smoothing can lead in the opposite direction. Similar connections lead from BDEs
to Automata and to Flows, respectively. Modified after Mullhaupt [2].

microbiology to the evolution of civilizations, passing through
economics and physics — related Boolean and other discrete
models are being explored more and more [9–13].
The purpose of this research-and-review paper is threefold:

(i) summarize and illustrate key properties and applications of
BDEs; (ii) introduce BDEs with an infinite number of variables;
and (iii) explore more fully, connections between BDEs and
other types of discrete dynamical systems (dDS). Therefore, we
first describe the general form and main properties of BDEs
and place them in the more general context of dDS, including
cellular automata and Boolean networks (Section 2). Next, we
summarize some applications, to climate dynamics (Section 3)
and to earthquake physics (Section 4); these applications illustrate
both the beauty and usefulness of BDEs. In Section 5 we introduce
BDEs with an infinite number of variables, distributed on a spatial
lattice (‘‘partial BDEs’’) and point to several ways of potentially
enriching our knowledge of BDEs and extending their areas of
application. Further discussion and open questions conclude the
paper (Section 6).

2. Boolean delay equations (BDEs)

BDEs may be classified as semi-discrete dynamical systems,
where the variables are discrete — typically Boolean, i.e. taking
the values 0 (‘‘off’’) or 1 (‘‘on’’) only — while time is allowed to be
continuous. As such they occupy the previously ‘‘missing corner’’
in the rhomboid of Fig. 1, where dynamical systems are classified
according to whether their time (t) and state variables (x) are
continuous or discrete.
Systems in which both variables and time are continuous are

called flows [14,15] (upper corner in the rhomboid of Fig. 1). Vector
fields, ordinary and partial differential equations (ODEs and PDEs),
functional and delay-differential equations (FDEs and DDEs) and

stochastic differential equations (SDEs) belong to this category.
Systems with continuous variables and discrete time (middle left
corner) are known as maps [16,17] and include diffeomorphisms,
as well as ordinary and partial difference equations (O4Es and
P4Es).
In automata (lower corner) both the time and the variables

are discrete; cellular automata (CAs) and all Turing machines
(including real-world computers) are part of this group [10,
11,18], and so is the synchronous version of Boolean random
networks [12,19]. BDEs and their predecessors, kinetic [20] and
conservative logic, complete the rhomboid in the figure and occupy
the remaining middle right corner.
The connections between flows andmaps are fairly well under-

stood, as they both fall in the broader category of differentiable dy-
namical systems (DDS [14–16]). Poincarémaps (‘‘P-maps’’ in Fig. 1),
which are obtained from flows by intersection with a plane (or,
more generally, with a codimension-1 hyperplane) are standard
tools in the study of DDS, since they are simpler to investigate, an-
alytically or numerically, than the flows fromwhich they were ob-
tained. Their usefulness arises, to a great extent, from the fact that
— under suitable regularity assumptions — the process of suspen-
sion allows one to obtain the original flow from its P-map; hence
the properties of the flow can be deduced from those of the map,
and vice-versa.
In Fig. 1, we have outlined by labeled arrows the processes that

can lead from the dynamical systems in one corner of the rhomboid
to the systems in each one of the adjacent corners. Neither the
processes that connect the two dDS corners, automata and BDEs,
nor these that connect either type of dDS with the adjacent-corner
DDS—maps and flows, respectively—are aswell understood as the
(P-map, suspension) pair of antiparallel arrows that connects the
two DDS corners. We return to the connection between BDEs and
Boolean networks in Section 2.6 below. The key difference between
kinetic logic and BDEs is summarized in the Appendix.

2.1. General form of a BDE system

Given a system with n continuous real-valued state variables
v = (v1, v2, . . . , vn) ∈ Rn for which natural thresholds qi ∈ R
exist, one can associatewith each variable vi ∈ R a Boolean-valued
variable, xi ∈ B = {0, 1}, i.e., a variable that is either ‘‘on’’ or ‘‘off’’,
by letting

xi =
{
0, vi ≤ qi
1, vi > qi

, i = 1, . . . , n. (1)

The equations that describe the evolution in time of the Boolean
vector x = (x1, x2, . . . , xn) ∈ Bn, due to the time-delayed
interactions between the Boolean variables xi ∈ B are of the form:
x1(t) = f1 [t, x1(t − θ11), x2(t − θ12), . . . , xn(t − θ1n)] ,
x2(t) = f2 [t, x1(t − θ21), x2(t − θ22), . . . , xn(t − θ2n)] ,

...
xn(t) = fn [t, x1(t − θn1), x2(t − θn2), . . . , xn(t − θnn)] .

(2)

Here each Boolean variable xi depends on time t and on the state
of the other variables xj in the past. The functions fi : Bn → B,
1 ≤ i ≤ n, are defined via Boolean equations that involve logical
operators (see Table 1). Each delay value θij ∈ R, 1 ≤ i, j ≤ n,
is the length of time it takes for a change in variable xj to affect
the variable xi. One always can normalize delays θij to be within
the interval (0, 1] so the largest one has actually unit value; this
normalization will always be assumed from now on.
Following Dee and Ghil [1], Mullhaupt [2], and Ghil and

Mullhaupt [3], we consider in this section only deterministic,
autonomous systems with no explicit time dependence. Periodic
forcing is introduced in Section 3, and random forcing in Section 4.
In Sections 2–4 we consider only the case of n finite (‘‘ordinary
BDEs’’), but in Section 5we allow n to be infinite, with the variables
distributed on a regular lattice (‘‘partial BDEs’’).
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