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Abstract

Based on the work of Nishikawa and Motter, who have extended the well-known master stability framework to include non-diagonalizable
cases, we develop another extension of the master stability framework to obtain criteria for global synchronization. Several criteria for global
synchronization are provided which generalize some previous results. The Jordan canonical transformation method is used in stead of the matrix
diagonalization method. Especially, we show clearly that, the synchronizability of a dynamical network with nonsymmetric coupling is not always
characterized by its second-largest eigenvalue, even though all the eigenvalues of the nonsymmetric coupling matrix are real. Furthermore, the
effects of the asymmetry of coupling on synchronizability of networks with different structures are analyzed. Numerical simulations are also done
to illustrate and verify the theoretical results on networks in which each node is a dynamical limit cycle oscillator consisting of a two-cell cellular
neural network.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Complex networks have become a focal research topic of
the nonlinear dynamics community in the past decade, espe-
cially how the topological structure affects the dynamics of
networks [1–9]. One of the most remarkable phenomena in
the dynamics of networks is their spontaneous synchroniza-
tion, which has been carefully studied in recent years [10–36].
Barahona and Pecora showed how the addition of random
shortcuts translates into improved network synchronizabil-
ity [11]. Wang and Chen presented a uniform complex network
model [9], and investigated its synchronization in small-world
and scale-free networks [12–15]. Nishikawa et al. found that
networks with a homogeneous distribution of connectivity are
more synchronizable than heterogeneous ones, even though the
average network distance is larger [16]. Chen proposed some
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criteria based on the concept of matrix measure [17]. Zhou
et al. studied synchronization in weighted complex networks
and showed that the synchronizability of random networks with
a large minimum degree is determined by two leading pa-
rameters: the mean degree and the heterogeneity of the dis-
tribution of node’s intensity [18]. Based on delayed complex
network models, some synchronization criteria for both delay-
independent and delay-dependent exponential stability of the
synchronization state are derived [19–21]. Lü and Chen intro-
duced a general time-varying complex network model and de-
rived some synchronization criteria for time-varying complex
networks [22,23]. While, most of the above researches follow
from the general master stability framework proposed by Pec-
ora and Carroll [24], which is based on the diagonalization of
its variational equation at the synchronous state, thus require
the coupling matrix to be symmetric or diagonalizable and usu-
ally gives criteria for local synchronization. Whereas, many
realistic networks are nonsymmetric, and maximally synchro-
nizable networks are almost always nondiagonalizable and can
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be obtained by imposing unidirectional information flow with
normalized input strength [25]; for a given degree distribution,
the maximum synchronizability is achieved when the network
of couplings is weighted and directed and the overall cost in-
volved in the couplings is minimum [26]. Nishikawa and Motter
extended the master stability framework to include cases where
the diagonalization is not necessarily possible by using the Jor-
dan canonical form [25,27], which has been used to study the
stability of synchronization in nonsymmetric networked sys-
tems [28–31]. We say nonsymmetric network which means that
its coupling matrix is not constrained to be symmetric. Very
recently, we used Jordan canonical transformation to observer
design of nonsymmetric networks [32] and synchroniza-
tion analysis of nonsymmetric networks with coupling time-
delay [33].

In this paper, based on the work of Nishikawa and Motter
[25,27], we extend the general master stability framework [24]
from local synchronization to global synchronization by using
an assumption which is satisfied for many existing chaotic (or
limit cycle) oscillators; the Jordan canonical transformation
method is used instead of the matrix diagonalization method.
Some criteria for global synchronization are derived, in which
the Jacobian matrix of the dynamical node evaluated on the
synchronous state is not necessarily used. Meanwhile, the
effects of the asymmetry of coupling on synchronizability
of networks with different topological structure are analyzed.
We noted that some criteria for global synchronization in
networks have been presented in [28–31]; Li and Chen have
derived a sufficient condition for the global synchronization and
asymptotical stability by introducing a reference state with the
Lyapunov stability theorem [34].

This paper is organized as follows. In Section 2, the dynami-
cal complex network model considered is introduced, and some
mathematical definitions and lemmas are given. The main re-
sults of this paper are given in Section 3, in which we extend
the master stability framework for global synchronization, and
some global synchronization criteria are obtained based on the
general network model with nonsymmetric coupling. In Sec-
tion 4, the effects of the asymmetry of coupling on the syn-
chronizability of networks with different topological structures
are analyzed. Numerical simulations are given in Section 5.
Section 6 is the conclusion of this paper.

Now, we list some mathematical notations used in this paper.
We denote matrix A is an n × n complex (real) matrix by
A ∈ Mn(C) (A ∈ Mn(R)). A square matrix A is positive
definite if η̄(t)∗ Aη̄ > 0 for all η̄ 6= 0, and a square matrix A
is negative definite if η̄(t)∗ Aη̄ < 0 for all η̄ 6= 0. We denote the
positive (nonnegative) definiteness of A by A � 0(A � 0) and
the negative (nonpositive) definiteness of A by A ≺ 0(A≺0).
A � B means A − B is a positive definite matrix. The vector

norm used will be ‖x‖ = (x∗x)
1
2 . Re(λi ) and Im(λi ) denote

the real part and imaginary part of a complex number λi ,
respectively. wR

l = Re(wl(t)), w I
l = Im(wl(t)), ẇR

l (t) =

dwR
l (t)
dt , and ẇ I

l (t) =
dw I

l (t)
dt , where wl(t) is a complex variable.

The symmetric part of a square matrix is As
=

1
2 (AT

+ A),
where A ∈ Mn(R). The n × n identity matrix is denoted by In .

2. Network model and mathematic preliminaries

2.1. Network model

Lü et al. introduced a general dynamical network
model [35]. The state equations of the entire network are given
by

ẋi (t) = f (xi (t)) +

N∑
j=1

gi j Ax j (t), i = 1, . . . , N , (1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T
∈ Rn is the state

variable of node i . A = (ai j ) ∈ Mn(R) is a constant inner-
coupling matrix between nodes, and G = (gi j ) ∈ MN (R) is
the coupling matrix of the network, where gi j ∈ R is defined as
follows: if there is a connection from node j to node i (i 6= j),
then, the coupling strength gi j 6= 0; otherwise, gi j = 0, and the
diagonal elements of G are defined by

gi i = −

N∑
j=1
j 6=i

gi j , i = 1, . . . , N . (2)

In network model (1), the coupling matrix G is nonsymmetric,
and its off-diagonal elements may be negative.

The coupling matrix G may have complex eigenvalues;
even if all its eigenvalues are real, in general, it is not
diagonalizable [36]. We always assume that G is irreducible
and all of its off-diagonal elements are nonnegative. According
to Lemma 2 in Ref. [37], the real parts of the eigenvalues of G
are less than or equal to 0, and zero is an eigenvalue of G with
multiplicity one corresponding to eigenvector (1, 1, . . . , 1)T.
For simplicity, we always assume λ1 = 0. If the coupling matrix
has k different eigenvalues and all of them are taken to be real,
we denote them as 0 = λ1 > λ2 > λ3 > · · · > λk .

Network (1) can be equivalently expressed as (3) by using
the Kronecker product [24,37–39],

Ẋ(t) = f (X (t)) + (G ⊗ A)X (t) (3)

where X (t) = (x1(t), x2(t), . . . , xN (t))T
∈ RnN , Ẋ(t) =

(ẋ1(t), ẋ2(t), . . . , ẋN (t))T
∈ RnN , f (X (t)) = ( f (x1(t)),

f (x2(t)), . . . , f (xN (t)))T
∈ RnN , G ⊗ A ∈ MnN (R) denotes

the Kronecker product of matrices G and A. It is sometimes
more convenient to use (3) than (1).

2.2. Mathematic preliminaries

Definition 1 (Synchronization). Let D0 denote an open set
in the state space Ω , if from any initial point X (t0) =

(x1(t0), . . . , xi (t0), . . . , xN (t0))T
∈ D0, there is ‖xi (t) − s(t)‖

→ 0 as t → ∞, i = 1, . . . , N , the autonomous network (1)
is said to realize synchronization locally in D0, and S(t) =

(s(t), . . . , s(t))T is called the synchronous state. If D0 is the
entire state space Ω of network (1), then it is said to realize
synchronization globally.

Obviously, if network (1) realized synchronization, then
x1(t) = · · · = xN (t) = s(t), s(t) is the synchronous state
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