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a b s t r a c t

We study modulational instability of matter-waves in Bose–Einstein condensates (BEC) under strong
temporal nonlinearity-management. Both BEC in an optical lattice and homogeneous BEC are considered
in the framework of the Gross–Pitaevskii equation, averaged over rapid time modulations. For a BEC in
an optical lattice, it is shown that the loop formed on a dispersion curve undergoes transformation due to
the nonlinearity-management. A critical strength for the nonlinearity-management strength is obtained
that changes the character of instability of an attractive condensate. MI is shown to occur below (above)
the threshold for the positive (negative) effective mass. The enhancement of number of atoms in the
nonlinearity-managed gap soliton is revealed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The phenomenon of modulational instability (MI) of nonlinear
plane waves under different types of management of the system
parameters has been the subject of intensive research over the
last years [1].Main emphasiswas given to dispersion-management
and nonlinearity-management. In nonlinear optics strong and
rapid modulations of the fiber dispersion is achieved by periodic
arrangement of fiber spans with alternating sign of the dispersion.
Dispersion-managed solitons supported by such a system have
essential advantages over conventional optical solitons for long
distance communication purposes [2–4]. Modulations of the
nonlinearity is a challenging problem also in fiber ring lasers
and in generation of Faraday waves in Bose–Einstein condensates
(BEC) [5–9]. MI in the form of Faraday waves can be observed both
in attractive and repulsive condensates. Recent observation of the
MI in optical media resulted from the periodic modulation of the
nonlinearity in the evolution variable, confirms the existence of
parametric resonances in the MI growth rate [6,10,11]. Faraday
waves (parametrically excited waves) in a BEC emerging from
temporal periodic variation of the atomic scattering length have
been studied in [9]. Such type of modulations can be achieved by
variation of the external magnetic field near Feshbach resonances
(FR). The corresponding technique is known as FR management.
In the Gross–Pitaevskii equation this corresponds to a temporal
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variation of the mean-field nonlinearity, i.e. to the nonlinearity-
management. MI in a harmonically trapped BEC under FR
management has been investigated in [12].
Recently the strong dispersion-management has been applied

to the dynamics of nonlinear periodic waves, namely cnoidal
waves, in optical fibers [13,14]. In these works the existence of
dispersion-managed cnoidal waves and strong deviation of the
stability borders of these waves from the ones of standard cnoidal
wave solutions of the nonlinear Schrödinger equation (NLSE) have
been established. Extension of the stability regions of some types
of nonlinear periodic waves can be due to the different scenarios
for the onset of MI of the background plane waves. Adiabatic
FR management for cnoidal waves in optical lattices has been
considered in [15,16]. The case of strongnonlinearity-management
remains unexplored.
The strong nonlinearity-management may be an effective tool

for stabilization of matter-wave solitons in multi-dimensional
attractive BEC [17–26]. In the context of nonlinear optics
such stabilization mechanism was first discussed in [27,28].
The phenomenon of MI is particularly important for generation
of soliton trains in BEC with controlled spatial arrangement
(repetition rate).MI of BEC in linear andnonlinear optical lattices in
the absence of time-periodic nonlinearity-management has been
investigated in our recent work [29]. Here we consider both theMI
of a homogeneous BEC and MI of a BEC loaded in an optical lattice
under FR management. The gap soliton structure existing in a BEC
with the zero background scattering length (asb = 0) has been
investigated in Ref. [30]. The couple-mode theory can be used to
analyze MI of nonlinear plane waves in an optical lattice subject
to FR management. In our investigations particular interest will be
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paid to the properties of loop structures emerging in the band gaps
(forbidden band).
In the present paper we investigate nonlinear dispersion

relations and the process of MI in a BEC under strong temporal
nonlinearity management (SNM). The outline of the paper is as
follows: The mathematical model is formulated in Section 2; MI
in a homogeneous BEC under SNM is considered in Section 3;
The nonlinear dispersion relation and loop structures for BEC in
an optical lattice under SNM are analyzed in Section 4 using the
coupled-mode theory. This section also includes the regions of MI
found in different areas of the band structure; The properties of gap
solitons are investigated in Section 5; Section 6 is devoted to details
of our numerical procedure; In the final Section 7 we summarize
our main results.

2. The model

Let us consider a BEC under temporal Feshbach resonance
management when the scattering length as varies in time. Then
an elongated BEC can be described by the quasi-1D GP equation
with a periodic potential (optical lattice) and the time-dependent
management of the coefficient of nonlinearity

ih̄ψt = −
h̄2

2m
ψxx + V (x)ψ − g1D(t)|ψ |2ψ, (1)

where g1D(t) = 2h̄as(t)ω⊥ is the mean field nonlinearity
coefficient, ω⊥ is the transverse oscillator frequency and V (x) =
V0 cos2(kx) is an optical lattice potential,

∫
∞

−∞
dx|ψ |2 = N , N is

the number of atoms. In dimensionless units we have

x→ kx, t → ωRt, ε =
V0
2ER

, ER =
h̄2 k2

2m
,

ωR = ER/h̄, u =

√
2h̄asω⊥
ER

ψe−iεt .

Eq. (1) takes the form of the NLSE with varying in time mean field
nonlinearity coefficient

iut + uxx + γ (t)|u|2u− 2ε cos(2x)u = 0, (2)

where γ (t) describes the strong nonlinearity-management and
has the form

γ (t) = γ0 +
1
µ
γ1

(
t
µ

)
,

∫ 1

0
γ1(τ ) dτ = 0, τ =

t
µ
,

µ� 1. (3)

This model has been considered in recent papers [15,16,30].
Specifically, in works [15,16] the evolution of nonlinear periodic
waves under adiabatic time-variation of the scattering length has
been studied and a possibility of generation of a train of solitons
by such a management scheme has been shown. Properties of
gap solitons under the strong management of nonlinearity were
analyzed based on the coupled mode system of equations in [30].
In thiswork the gap soliton solutions and their stability for the case
γ0 = 0were investigated. Herewewill studyMI of nonlinear plane
waves in a BEC (without, andwith an optical lattice) under SNM, as
well as properties of gap solitons in themodel (2) for nonzero value
of γ0. In particular, we will analyze the possibility of enhancement
of number of atoms in the gap soliton under SNM.
In deriving averaged equation we follow the works [30,31] and

use the transformation

u(x, t) = eiγ−1(t)|v|
2
v(x, t),

γ−1(τ ) =

∫ 1

0
γ (τ ′) dτ ′ −

∫ 1

0

∫ τ

0
γ (τ ′) dτ ′ dτ .

(4)

Supposing the parameter µ to be small (that corresponds to high
frequencies of modulation) unknown function v can be expanded
in series as

v = w + µv1 + µ
2v2 + · · · , (5)

where unknownw is a slowly varying function. Using transforma-
tion (4) and expansion (5) in governing Eq. (2) with posterior aver-
aging over the period of rapid modulation, we arrive at the follow-
ing averaged equation forw [31]

iwt + wxx + γ0|w|2w − 2ε cos(2x)w + σ 2[2(|w|2)xx|w|2

+ ((|w|2)x)
2
]w = 0. (6)

Parameter σ is defined as σ 2 =
∫ 1
0 γ

2
−1 dτ . For particular case of

sinusoidal modulations γ1 = h sin(ωt)we have σ 2 = h2/(2ω2) ∼
O(1) (ω = 1/µ). For the step-like modulation with the same
amplitude h and frequency ω we have σ 2 = h2/ω2.
This form of averaged equation can be also obtained for the case

of the weak nonlinearity management when γ = γ0 + γ1(t/µ),
with σ 2 � 1 [31,32].

3. Modulational instability of nonlinear plane wave in a
homogeneous media

Now let us consider the casewhen the optical lattice is switched
off, i.e. ε = 0 in Eq. (2). The MI of a nonlinear plane wave w =
A exp(i(γ0A2t)) can be explored using the linear stability analysis,
i.e. looking for the solution in the form

w = (A+ ψ(x, t)) exp[iγ0A2t], ψ � A. (7)

We have the following equation for ψ

iψt + ψxx + γ0A2(ψ + ψ∗)+ 2σ 2A4(ψxx + ψ∗xx) = 0. (8)

Representingψ = ψr+iψi and performing Fourier transformation
ψr(ψi)(x, t) =

∫
dkū(v̄)(k, t) exp(ikx) we get the dispersion

relation

p2 = k2[2γ0A2 − (1+ 4σ 2A4)k2]. (9)

Instability region corresponds to the condition p2 > 0. Thus we
obtain

k2 ≤
2γ0A2

1+ 4σ 2A4
. (10)

The maximum of the MI gain is achieved at the value of the wave
number

kc =
√

γ0

1+ 4σ 2A4
A. (11)

Maximal value of the MI growth rate is

pc =
γ0A2

√
1+ 4σ 2A4

. (12)

Thus we find that under the temporal nonlinearity management
the MI growth rate is decreased by a factor of

√
1+ 4σ 2A4.

Such decrease of the gain is due to the defocusing effect induced
by the nonlinearity management. This observation explains the
stabilizing role of the strong nonlinearity management in a higher
dimensional attractive BEC [17,18,33,34].
Numerical simulations of the 1D GP Eq. (2) with a strong

nonlinearity management confirm these predictions. In Fig. 1 we
plot theMI gain versus thewave number ofmodulations k for three
different caseswith γ0 = 1 andω = 10: (a)when the nonlinearity-
management is absent, σ 2 = 0 and when the management is
present (b) σ 2 = 0.125(h = 5), (c) σ 2 = 0.5(h = 10). One
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