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a b s t r a c t

Using numerical methods, we construct families of vortical, quadrupole, and fundamental solitons in
a two-dimensional (2D) nonlinear-Schrödinger/Gross–Pitaevskii equation which models Bose–Einstein
condensates (BECs) or photonic crystals. The equation includes the attractive or repulsive cubic
nonlinearity and an anisotropic periodic potential. Two types of anisotropy are considered, accounted for
by the difference in the strengths of the 1D sublattices, or by a difference in their periods. The limit case of
the quasi-1D optical lattice (OL), when one sublattice is missing, is included too. By means of systematic
simulations, we identify stability limits for two species of vortex solitons and quadrupoles, of the rhombus
and square types. In the attractionmodel, rhombic vortices and quadrupoles remain stable up to the limit
case of the quasi-1D lattice. In the samemodel, finite stability limits are found for vortices andquadrupoles
of the square type, in terms of the anisotropy parameter. In the repulsion model, rhombic vortices and
quadrupoles are stable in large parts of the first finite bandgap (FBG). Another species of partly stable
anisotropic states is found in the second FBG, subfundamental dipoles, each squeezed into a single cell of
the OL. Square-shaped quadrupoles are completely unstable in the repulsion model, while vortices of the
same type are stable only in weakly anisotropic OL potentials.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A subject of great current interest in theoretical and experimen-
tal studies of the dynamical patterns formation in Bose–Einstein
condensates (BECs) and photonic crystals is the existence and sta-
bility of multidimensional solitons and localized vortices in two-
and three-dimensional (2D and 3D) settings. While solitons have
been created inwell-known experiments in BECwith attractive in-
teractions between atoms, loaded in effectively 1D (cigar-shaped)
traps [1,2], a basic problem impeding straightforward creation of
multidimensional solitons is the instability against collapse driven
by the cubic self-attractive nonlinearity [3]. As concerns ring-
shaped solitons with intrinsic vorticity, they are additionally sub-
ject to the symmetry-breaking azimuthal instability, which is even
stronger than the instability to the collapse [4].
Itwas proposed [5–8] that a generalmethod for the stabilization

of multidimensional solitons and localized vortices in BEC may
be based on the use of optical lattices (OLs), i.e., periodic
potentials which are induced by the interference between
counterpropagating laser beams illuminating the condensate.
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Stable 2D and 3D solitons can be supported by full OLs (with
dimension D equal to that of the space in which the lattice was
created), and also by low-dimensional OLs, with dimension D −
1, i.e., quasi-1D and quasi-2D lattices in the 2D and 3D space,
respectively [7,10]. In the latter case, the solitons naturally feature
a strongly anisotropic shape.
Although the OL breaks the rotational invariance, it can support

and stabilize not only fundamental solitons, but also vortical
ones [5,6,8,9], including localized vortices of higher orders, with
‘‘spin’’ (the topological charge, alias vorticity) S ≥ 1 [11]. The
simplest ‘‘crater-shaped’’ vortex soliton, in the form of a single
density peak with an inner hole induced by the vorticity, is always
unstable [12,13] (the instability splits it into several pulses, one of
which survives, demonstrating a randomwalk across the OL [13]).
Stable vortices with S = 1 are built as sets of four [5,6] or eight [12,
23] peaks, with the phase difference, respectively, ∆φ = π/2 or
π/4 between adjacent ones, which corresponds to the total phase
circulation of 2π . There are two different species of the simplest
stable vortex solitons, which are composed of four peaks: densely
packed squares, with the center coinciding with a local maximum
of the OL potential [6,13], and ‘‘porous’’ rhombuses, featuring
a nearly empty lattice cell at the center [5,12,13] (two similar
species of vortex solitons are also known in discretemodels, where
rhombuses are sometimes called crosses [14]). It was recently
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demonstrated [9] that the squares and rhombuses form separate
families, each featuring a pair of branches connected at a turning
point. The modes belonging to the different branches differ by
the number of peaks (for instance, four and eight peaks that may
constitute a rhombic vortex, as mentioned above).
Stable vortices of higher orders, up to S = 6, were constructed

as ring-shaped sets consisting of up to N = 12 peaks, with
respective phase differences ∆φ = 2πS/N [11]. The localized
vortices formally corresponding to S = 2, which are composed
of 4 peaks, have ∆φ = π , i.e., these are actually real solutions
in the form of quadrupoles. Also predicted were stable topological
patterns in the form of supervortices, which are ring chains built
of 12 (or more) compact crater-shaped vortices carrying local
spins s = 1, with global vorticity S = ±1 imprinted onto
the entire ring [11]. The supervortices may be stable, even if
individual ‘‘crater’’ peaks, ofwhich they are composed, are unstable
in isolation, as mentioned above.
The quasi-2D lattice in the 3D space can also support stable

3D solitons with embedded vorticity [15]. On the other hand, the
existence and stability of vortices in the 2D model with the quasi-
1D lattice remains an open problem.
Solitons of a different type, namely, gap solitons (GSs), can

be supported by full OL potentials of any dimension in BEC
with repulsive interactions between atoms. The GSs result from
the balance between the repulsive nonlinearity and the negative
effective mass in parts of the linear bandgap spectrum generated
by the OL [16,17]. They are stable localized objects [18], even if
they cannot realize the ground state of the condensate trapped in
the OL. The creation of GSs containing ' 250 atoms of 87Rb was
reported in the effectively 1D setting [19] (see also review [20]).
Multidimensional GSs [21], including gap-type vortices [12,22,
23], and ‘‘semi-gap’’ solitons (which are organized as GSs in one
direction, and regular solitons in the other [24]) were predicted
too. As concerns gap-soliton vortices, they may feature both the
square [22] and rhombic [12,22,23] shapes. In both 1D and 2D
settings, stable GSsmay be supported not only by periodic OLs, but
also by quasi-periodic lattices [25].
Thus far, the studies of 2D and 3D solitons supported by

OLs were confined to two limit cases, viz., the full (isotropic)
lattices, and low-dimensional ones, with one sublattice missing.
In experiments, it is quite easy to create a more general setting,
with an anisotropic OL, composed of 1D sublattices with different
strengths and/or different periods. To the best of our knowledge,
fundamental solitons and vortices in anisotropic lattices were
previously studied only in the discrete model [14], that may be
considered as a model for the BEC trapped in a very deep OL
[17,26].
Similar settings are available for the experiment in nonlinear

optics, where photonic lattices can be induced in photorefractive
crystals illuminated by pump laser beams in the ordinary
polarization (in which the medium is nearly linear), while solitons
are created by probe beams launched in the extraordinary
polarization [27]. In addition to fundamental 2D solitons [28],
localized vortices [29], necklace-shaped [30] and circular [31]
solitons have been created by means of this technique. In
particular, 2D anisotropic solitons supported by an isotropic
square-shaped photo-induced lattice were reported in Ref. [34].
Asymmetrically shaped vortex solitons were predicted in that
medium too [35].
Another realization of 2D solitons [32] and vortices [33] in

nonlinear optics is possible in photonic-crystal fibers. Unlike the
saturable nonlinearity characteristic to photorefractive crystals,
they feature the same cubic (Kerr) nonlinearity as BEC.
The anisotropic-lattice settings for solitons, vortices and

quadrupoles, which are the subject of the present work, suggest
to consider several issues of evident interest. One of them is

finding stability borders for 2D vortex and quadrupole solitons
in the model with the attractive cubic nonlinearity. Another
straightforward question is to identify existence and stability
limits for 2D GSs in the model with the self-repulsion, where,
obviously, solitons cannot exist in the quasi-1D limit, when one
of 1D sublattices is switched off. The first noteworthy finding
reported below is that both the vortices (with S = 1) and
quadrupoles of the rhombus type exist and remain stable up to
the limit of the quasi-1D lattice (in the attraction model). For the
square-shaped vortices and quadrupoles, we find a critical degree
of the anisotropy of the 2D lattice, up towhich they remain stable –
unlike their rhombic counterparts, they are unstable in the limit of
the quasi-1D lattice. Generally, the stability region for quadrupoles
in the attraction model is essentially broader than for vortices. In
the repulsion model, we find the existence and stability limits for
the fundamental (S = 0), vortical (S = 1) and quadrupole GSs. In
this case too, the rhombuses are much more stable than squares,
but quadrupoles are found to be less stable than vortices, on the
contrary to the attraction model.
These results predict universal properties of fundamental,

vortical, and quadrupole 2D solitons in nonlinear periodic
media, that can be realized in BEC, photonic crystals and photonic-
crystal fibers, and other physical media. Experimental verification
of the predictions is quite feasible both in BEC and photonic lattices
in photorefractive crystals.
The rest of the paper is organized as follows. In Section 2,

we formulate the model and demonstrate spectra generated by
the OLs in its linear version. Systematic findings for the 2D
vortices and quadrupoles of the rhombus and square type are
reported in Sections 3 and 4, for the models with attraction and
repulsion, respectively. While the results are obtained by means
of systematic simulations, Section 3 includes a brief discussion
which aims to explain some findings by means of an analytical
approximation. The paper is concluded by Section 5 in which
the main results are summarized, and examples of stable three-
dimensional GSs supported by the respective anisotropic OL are
additionally displayed.

2. The model: nonlinear equations and linear spectra

2.1. The Gross–Pitaevskii equation

The starting point is the 3D Gross–Pitaevskii equation for the
mean-field wave function, Ψ (X, Y , Z, T ), where the coordinates
and time denoted by capital letters aremeasured in physical units:
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Herem and as are the atomic mass and scattering length of atomic
collisions, and W is the external potential. For the anisotropic 3D
lattice with strengthW0 and period d, the potential is
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where anisotropy factor η takes values 0 < η ≤ 1, with the
isotropic and quasi-2D limits corresponding, respectively, to η =
1 and η = 0. If the 1D components of the OL are induced by
the superposition of two counterpropagating laser beams with
wavelength λ and misalignment angle 2θ , the corresponding OL
period is d = λ/ (2 cos θ). Besides using different intensities of
light in different pairs of beams, which is accounted for by η < 1 in
Eq. (2), another source of the anisotropymay be the use of different
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