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a b s t r a c t

We study the formation of large-scale coherent structures (condensates) for a system of two weakly
interacting Bose gases in the semiclassical approximation. Using the coupled defocusing nonlinear
Schrödinger (NLS) equations as a representative model, we focus on condensation in the phase mixing
regime. We employ weak turbulence theory to provide a complete thermodynamic description of the
classical condensation process.We show that the temperature and the condensatemass fractions are fully
determined by the total number of particles in each component and the initial total energy. Moreover,
we find that, at higher energies, condensation can occur in only one component. We derive an analytic
result for the variation of the critical energy where this transition occurs. The theory presented provides
excellent agreement with results of numerical simulations obtained by directly integrating the dynamical
model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many classical systems in nature reveal the emergence of
large scale coherent structures from a background irregular field
characterised by small-scale fluctuations. Examples of systems
that exhibit such behaviour include classical turbulence, nonlinear
optics, superfluids, ultracold gases and Bose–Einstein Condensates
(BECs), and the formation of the early universe. In certain regions
of the parameter space, a large sub-class of these systems can be
described by a system of weakly nonlinear dispersive waves. A
universal equation that governs the evolving field in such scenarios
is then given by the Nonlinear Schrödinger (NLS) equation. The
process of self-organisation in the focusing NLS equation has
been studied in [1]. It was found that a large-scale solitary wave
tends to emerge from a sea of small-scale turbulent fluctuations.
In this work, we concentrate on the defocusing NLS equations.
This equation has been receiving increasing attention due to the
experimental advances in BECs. In this context, the defocusing NLS
equation corresponds to the Gross–Pitaevskii (GP) equation [2] of
a homogeneous Bose gas. The GP equation has long been used
as a model of a weakly interacting Bose gas at zero temperature.
More recently, it has been argued [3] that the GP equation can
be used to model the long wavelength part of the spectrum of
a BEC at finite temperatures. Numerical simulations conducted
within this framework [4,5], for a one component system, have
indeed confirmed this, revealing the ability of themodel to capture
the formation of a large scale coherent structure (a condensate)
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from an initially turbulent state. More recently, Connaughton
et al. [6] formulated a theory, for the one component system,
which provides a framework for determining the state of the
system at equilibrium. This in turn can be used to compute the
thermodynamic properties of a weakly interacting Bose gas.
With the rapid developments being made in experimental

techniques, it is now possible to realise multicomponent BECs
formed by the simultaneous trapping and cooling of atoms in
distinct spin or hyperfine levels [7] or different atomic species
[8]. Such systems are of interest since they can give rise
to phenomena which are unique to multicomponent systems
that have no analogue in the one component case. The finite
temperature dynamics of such Bose gas mixtures is governed by
a system of coupled NLS equations. An important question that
subsequently arises is ‘‘How can we describe the thermodynamic
state of such a multicomponent system?’’ This would then allow
a clear specification of the temperature of the system which
in turn would provide a means to quantify various dynamical
effects. As an example, we might be interested in determining
the mutual friction forces that can arise between the thermal
cloud and superfluid vortices in a multicomponent system.
Results addressing these issues for the one component case
have already been presented in [9]. To generalise these results
to a multicomponent system, an accurate specification of the
properties of the system at equilibrium is needed.
In this work, we will take the first step towards generalising

the results presented in [6], for a one component system, to
an N-component system. Since the analysis of the N-component
case is technically more involved but the ideas are in principle
similar to the simpler two component case, we will focus on
this special case in the remainder of this work. We note that
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even this simpler case can serve as an idealised model in various
branches of physics. For example, the model can be used to study
symmetry-breaking phase transitions that are believed to have
occurred in the early evolution of the universe. A specific example
is given by the Kibble–Zurek mechanism [10] of the formation
of topological defects following the rapid quench of the system
below the point of second-order phase transitions. This scenario
would correspond to the formation of cosmological vortons and
springs that are analogous to the vortex ring-slaved wave and
vortex ring-vortex ring complexes of BECs [11]. In addition to these
physical examples, the two-component coupled NLS equations are
also encountered in the study of optical fibres and electromagnetic
waves [12]. Given the universality of these equations in the
nonlinear sciences, an accurate thermodynamic description of the
condensation process in such a system could find widespread
applications in the aforementioned fields. We recall that two-
component systems tend to show a broad class of qualitatively
different behaviour depending on the relative strengths of the
intercomponent and intracomponent interactions. This can lead to
contrasting regimes of condensation: the phasemixing regime and
the phase separation regime [13]. Consistentwith the assumptions
commonly used in weak turbulence theory, which will form the
basis of our approach, we will focus exclusively on the phase
mixing regime.

2. Kinetic theory for two-component system

Webegin by considering the scenario of a system of twoweakly
interacting Bose gases within the semiclassical approximation,
that have been rapidly cooled below the transition temperature.
Their evolution from the resulting strongly nonequilibrium initial
state is then described by the coupled NLS equations given by

i∂tψ1 = −∇2ψ1 + |ψ1|2ψ1 + α|ψ2|2ψ1,

i∂tψ2 = −∇2ψ2 + |ψ2|2ψ2 + α|ψ1|2ψ2,
(1)

where ψ1 and ψ2 are complex-valued classical fields correspond-
ing to each component, and α is the intracomponent coupling
constant. For the phase mixing regime and repulsive interactions
between atomic species, we require 0 < α < 1. The dynamics gov-
erned by the above equationswill conserve the totalmass (number
of particles) given by N1 =

∫
|ψ1|

2dx and N2 =
∫
|ψ2|

2dx. In ad-
dition, the total energy (Hamiltonian) of the coupled system

H =
∫ [

2∑
i=1

{
|∇ψi|

2
+
1
2
|ψi|

4
}
+ α|ψ1|

2
|ψ2|

2

]
dV (2)

will be conserved. Without loss of generality we shall assume that
N2 ≤ N1.
Despite the formal reversibility of the above Hamiltonian

system, the evolution of the nonlinear waves ψ1 and ψ2 is
nonintegrable, giving rise to an effective diffusion in phase space.
This results in an irreversible evolution to thermal equilibrium. By
invoking the random phase approximation (assumption of quasi-
Gaussian statistics), it is possible to derive closed irreversible
kinetic equations that describe the evolution of the system using
Weak Turbulence Theory (WTT) [14]. For a homogeneous system,
we accomplish this by expressing the order parameters in terms
of their Fourier transforms ψ1 = 1

(2π)3/2
∫
ak(t)eik·xdk, ψ2 =

1
(2π)3/2

∫
bk(t)eik·xdk. Substituting into Eq. (2), we can derive

expressions for the spectral number densities
〈
ak1a

∗

k2

〉
= n1δ(k1−

k2);
〈
bk1b

∗

k2

〉
= l1δ(k1 − k2). Provided the nonlinearity in the

system is sufficiently weak (i.e. N1/V � 1; N2/V � 1; α � 1,

where V is the volume of the system), we can derive the kinetic
equations

∂tnk =
4π
(2π)6

∫
([(nk + n1)n2n3 − nkn1(n2 + n3)]

+α2[(nk + l1)l2n3 − nkl1(l2 + n3)])
× δ(k+ k1 − k2 − k3)δ(k2 + k21 − k

2
2 − k

2
3)dk1dk2dk3.

∂t lk =
4π
(2π)6

∫
([(lk + l1)l2l3 − lkl1(l2 + l3)]

+α2[(lk + n1)n2l3 − lkn1(n2 + l3)])
× δ(k+ k1 − k2 − k3)
× δ(k2 + k21 − k

2
2 − k

2
3)dk1dk2dk3. (3)

These equations conserve N1 = (2π)−3
∫
nk(t)dk, N2 =

(2π)−3
∫
lk(t)dk, and the total kinetic energy E = (2π)−3

∫
k2

(nk(t) + lk(t))dk. They admit two formal equilibrium solutions;
the first corresponding to a uniform distribution neqk = c1, l

eq
k = c2,

and the second given by the Rayleigh–Jeans (RJ) distribution

neqk =
T

k2 − µ1
, leqk =

T
k2 − µ2

. (4)

Here, T is the thermodynamic temperature, and µ1 and µ2
are related to the chemical potentials of the two gases. Eq. (3)
satisfies a H-theorem for entropy growth which implies that the RJ
distribution will be realised in practice. However, Eq. (4) provides
only a formal solution since it leads to non-convergent expressions
for N1, N2, and the kinetic energy E, as k→∞. We recall that, for
BECs, Eq. (1) is valid in the limit of large occupation numberswhere
a semi-classical description is valid. When nk ∼ 1 and lk ∼ 1, Eq.
(1) begins to break down and a full quantummechanical treatment
of the problem becomes necessary. To regularise the ultra-violet
catastrophe, we introduce a cut-off kc such that neq(|kc |) >
1, leq(|kc |) > 1. The physical justification for such a cut-off
follows from the fact that, for small occupation numbers, quantum
mechanical corrections would modify the RJ distribution to the
Bose–Einstein distribution. Since ourmodel is semi-classical, these
corrections are not included. A cut-off must, therefore, be imposed
by hand. This regularisation of the ultra-violet catastrophe is
essential in order for ourmodel to realise an equilibrium statewith
a finite, non-zero temperature. Such a regularisation has also been
used in other studies [4,15]. In practice, this cut-off is introduced
by prescribing a particular grid resolution in our simulations.
Such a cut-off can only guarantee that the above condition
is satisfied at thermodynamic equilibrium, but not necessarily
throughout the transients (i.e. throughout the formation and
growth of the condensates). Consequently, care must be exercised
in interpreting some quantitative aspects of the nonequilibrium
state of the system. This problem is related to the well-known
bottleneck effect associated with energy spectrum pileup at high
wave numbers [22]. Nevertheless, qualitative features concerning
the scenario of condensate formation are well described by this
approach.
The RJ distribution corresponding to the solution of Eq. (3) is

only valid at sufficiently high energies when no condensate is
present. At sufficiently low energies, Eq. (3) breaks down very
rapidly giving way to the formation of a condensate as elucidated
in numerical simulations for a one-component system [4–6] and a
two-component system [16]. In the simplest scenario, condensates
with zero wavenumbers are formed and are associated with the
uniform states provided we are in the phase mixing regime. If
the condensates that form are strong in the sense that (N1 −
no)/N1 � 1, (N2 − lo)/N2 � 1 (no = |ao|2; lo = |bo|2 are the
occupation numbers of the condensates in components 1 and 2,
respectively), one can describe the nonlinear dynamics at these
later times by considering the evolution of small quasiparticle
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