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Chaotic attractors in incommensurate fractional order systems
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Abstract

In this paper, based on the stability theorems in fractional differential equations, a necessary condition is given to check the existence of
1-scroll, 2-scroll or multi-scroll chaotic attractors in a fractional order system. This condition is proposed for incommensurate order systems in
general, but in the special case it converts to the condition given in the previous works for the commensurate fractional order systems. Though
the presented condition is only a necessary (and not sufficient) condition for the existence of chaos it can be used as a powerful tool to distinguish
for what parameters and orders of a given fractional order system, chaotic attractors can not be observed and for what parameters and orders, the
system may generate chaos. It can also be used as a tool to confirm or reject results of a numerical simulation. Some of the numerical results
reported in the previous literature are confirmed by this tool.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Fractional order system; Incommensurate order systems; Chaos; Chaotic attractor

1. Introduction

Fractional calculus is a mathematical topic with a more
than 300 year old history but its application to physics and
engineering has been reported only in the recent years. It
has been found that in interdisciplinary fields, many systems
can be described by fractional differential equations. For
instance, fractional derivatives have been widely used in
the mathematical modeling of viscoelastic materials [1,2].
Some electromagnetic problems are described using fractional
integro-differentiation operators [3]. The anomalous diffusion
phenomena in inhomogeneous media can be explained by non-
integer derivative based equations of diffusion [4,5]. Another
example for an element with fractional order model is the
fractance. The fractance is an electrical circuit with non-
integer order impedance [6]. This element has properties lie
between resistance and capacitance. Tree fractance [7] and
chain fractance [8], as infinite self-similar circuits consisting
of resistors and capacitors, are two well known examples
of fractances. The resistance–capacitance–inductance (RLC)
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interconnect model of a transmission line is a fractional order
model [9]. Heat conduction as a dynamical process can be
more adequately modeled by fractional order models than by
their integer order counterparts [10]. In biology, it has been
deduced that the membranes of cells of biological organism
have fractional order electrical conductance [11] and then are
classified in group of non-integer order systems. In economics,
it is known that some finance systems can display fractional
order dynamics [12]. More examples from fractional order
dynamics can be found in [13,14] and references therein.

Study on the fractional order systems has attracted
increasing attention in the recent years. For instance, in [15]
it has been shown that a limit cycle can be generated in
the fractional order Wien bridge oscillator. Dynamics of the
fractional order Van der Pol oscillator has been studied in [16].
Existence of a limit cycle for the fractional Brusselator has been
shown in [17]. Also, it has been found that some fractional
order differential systems can demonstrate chaotic behavior.
The fractional order Chua circuit [18], the fractional order
Duffing system [19], the fractional order jerk model [20],
the fractional order Lorenz system [21], the fractional order
Chen system [22], the fractional order Lü system [23], the
fractional order Rössler system [24], the fractional order
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Arneodo system [25], the fractional order Newton–Leipnik
system [26], the fractional order Genesio–Tesi system [27],
the fractional order Ikeda delay system [28] and non-integer
order cellular neural networks [29] are well known examples
from these kinds of systems. In most of the above mentioned
papers existence of chaos has been demonstrated only based
on numerical simulation results. Because of low accuracy
associated with some of the numerical methods or limitations
of them to detect chaos [30,31], wrong results have been
reported in special cases. Due to this deficiency, a logical need
is observed to develop analytical methods in order to investigate
chaos in fractional order systems. One of these methods which
is constructed based on the stability analysis in fractional
order systems is the subject of this paper. In fact, the work
presented here is the extension of our previous work in [30].
In [30], we established a necessary condition through which
existence of a 2-scroll attractor in fractional order systems with
commensurate order can be checked. In this paper, our aim is
to find a similar condition to check the existence of 1-scroll,
2-scroll or multi-scroll chaotic attractors in incommensurate
fractional order systems.

This paper is organized as follows. Section 2 summarizes
the basic concepts in fractional calculus. In Section 3, two
stability theorems on fractional order systems and the related
results are presented. Based on these two stability theorems,
the required condition by which an incommensurate fractional
order system can demonstrate chaos and produce 1-scroll,
2-scroll or multi-scroll attractors is discussed in Section 4.
Numerical simulations are presented in Section 5 and finally
conclusions in Section 6 close the paper.

2. Basic concepts

Fractional calculus as an extension to ordinary calculus pos-
sesses definitions that stem from the definitions existing for
ordinary derivatives. Some of the existing definitions for frac-
tional derivatives are described in [14]. The Riemann–Liouville
definition is the simplest one and the easiest definition to use.
Based on this definition, the αth order fractional derivative of
function f (t) with respect to t and the terminal value 0 is given
by:

dα f (t)

dtα
=

1
0(m − α)

dm

dtm

∫ t

0
(t − τ)m−α−1 f (τ )dτ, (1)

where m is the first integer larger than α, i.e., m − 1 ≤ α < m
and 0(.) is the Gamma function,

0(z) =

∫
∞

0
t z−1e−t dt. (2)

The term “terminal value” indicates the lower limit in the
integral appeared in (1) and it may be a nonzero value in
the general definition of the fractional derivative. The Laplace
transform of the Riemann–Liouville derivative is given as
follows:

L

{
dα f (t)

dtα

}
= sα L{ f (t)} −

m−1∑
k=0

sk dα−k−1 f (0)

dtα−k−1 ,

m − 1 < α ≤ m. (3)

Unfortunately, the Riemann–Liouville fractional derivative
appears unsuitable to be treated by the Laplace transform
technique in that it requires knowledge of the non-integer
order derivatives of the function at t = 0. The mentioned
problem does not exist in the Caputo definition of the fractional
derivative. This definition of derivative, which is sometimes
called smooth fractional derivative, is described as:

dα f (t)

dtα
=


1

0(m − α)

∫ t

0

f (m)(τ )

(t − τ)α+1−m
dτ,

m − 1 < α < m
dm

dtm f (t), α = m,

(4)

where m is the first integer larger than α. The Laplace transform
of the Caputo fractional derivative is:

L

{
dα f (t)

dtα

}
= sα L{ f (t)} −

m−1∑
k=0

sα−1−k f (k)(0),

m − 1 < α ≤ m ∈ N . (5)

Contrary to the Laplace transform of the Riemann–Liouville
fractional derivative, only integer order derivatives of function
f appear in the Laplace transform of the Caputo fractional
derivative. For zero initial conditions, (5) reduces to:

L

{
dα f (t)

dtα

}
= sα L{ f (t)}. (6)

In the rest of this paper, the notation dα/dtα represents the
Caputo fractional derivative of order α.

A linear time invariant fractional order system can be defined
by the following state space model:{dαx

dtα
= Ax + Bu

y = Cx,
(7)

where x ∈ Rn , u ∈ Rm , y ∈ R p are states, inputs, and
outputs vectors of the system and A ∈ Rn×n , B ∈ Rn×m , C ∈

R p×n , and α = [α1, α2, . . . , αn] indicates the fractional orders,
i.e. dα

dtα = [
dα1

dtα1 , dα2

dtα2 , . . . , dαn

dtαn ]
T. If α1 = α2 = · · · = αn ,

system (7) is called a commensurate order system, otherwise
system (7) indicates an incommensurate order system. Now, we
state two stability theorems from fractional calculus.

3. Stability theorems

In this section we describe two theorems on fractional order
systems and their related results. The first theorem has been
given for commensurate fractional order systems.

Theorem 1 ([32]). The following autonomous system:

dαx

dtα
= Ax, x(0) = x0, (8)

with 0 < α < 1, x ∈ Rn and A ∈ Rn×n , is asymptotically
stable if and only if |arg(λ)| > απ/2 is satisfied for all
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