
Physica D 237 (2008) 1282–1301
www.elsevier.com/locate/physd

The foundation of self-developing blob machines for spatial computing

Frédéric Gruaua,b,c,d, Christine Eisenbeisb, Luidnel Maignanb,∗

a LRI - Université de Paris-Sud 11, bâtiment 490, 91405 Orsay Cedex, France
b Inria Futurs Saclay - Parc Orsay Université, 4, rue Jacques Monod, 91893 Orsay Cedex, France

c Laboratoire d’informatique, de robotique et de microélectronique de Montpellier, 31 rue Ada, 34000 Montpellier, France
d University of the West of England, Frenchay Campus, Coldharbour Lane Bristol BS16 1QY, United Kingdom

Available online 4 April 2008

Abstract

The current trend in electronics is to integrate more and more transistors on a chip and produce massive hardware resources. As a consequence,
traditional computing models, which mainly compute in the temporal domain, do not work well anymore since it becomes increasingly difficult to
orchestrate these massive-scale hardware resources in a centralized way. Spatial computing is a unifying term that embodies many unconventional
computing models and means computing on a relatively homogeneous physical medium made of hardware components, where the communication
time is dependent on the Euclidean distance between the components (locality constraint). This constraint makes the programming for high
performance significantly more complex compared to classical non-spatial hardware because performance now depends on where computation
happens in space (mapping problem). Blob computing is a new approach that addresses this parallel computing challenge in a radically new
and unconventional way: it decouples the mapping of computations onto the hardware from the software programming while still elegantly
exploiting the space of the underlying hardware. Hardware mapping of computations is done by a physical force-based approach that simulates
forces between threads of computation (automata). Attractive forces are used to keep automata that need to communicate with each other closer
while repulsive forces are used for load balancing. The advantage of these primitives is that they are simple enough to be implemented on an
arbitrary computing medium. They form the basis of a runtime system (RTS) that transforms an arbitrary computing medium into an easier-to-
program virtual machine called the blob machine. The basic objects of the blob machine are those automata, and the instructions let automata
create new automata in specific ways so as to maintain a hierarchical organization (which facilitates both the mapping and the programming). We
detail the basic instructions of the blob machine and demonstrate their confluence. Programming a spatial medium to perform a given algorithm
then boils down to programming the blob machine, provided the RTS is implemented on it. The advantage of this approach is the hardware
independency, meaning that the same program can be used on different media. By means of several examples programmed using a high-level
language description, we further show that we can efficiently implement most current parallel computing models, such as Single Instruction
Multiple Data (SIMD), data parallelism, “divide-and-conquer” parallelism and pipelining which demonstrates parallel expressiveness. On sorting
and matrix multiplication algorithms, we also show that our approach scales up optimally with the number of basic hardware components.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Spatial computing; Distributed algorithm; Self-developing network; Computer architecture; Computer language

1. Introduction

1.1. Motivation: Scalability and expressiveness

An important part of computer science is devoted to
designing a context that is conducive to programming the
computer and obtaining results efficiently. This covers many

∗ Corresponding author.
E-mail address: luidnel.maignan@gmail.com (L. Maignan).

areas of research, organized in layers, including hardware,
architecture, machine language, and high-level language. The
lowest layer deals with the physical properties of physical
entities to provide a preliminary set of manageable components
and rules, and the highest level attempts to provide an abstract
representation of the former so that the programmer can
describe the desired task in an expressive way, while offering
the best feasible performance.

The scalability problem. At the lowest physical level,
technology already produces chips with billions of transistors.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.03.046

http://www.elsevier.com/locate/physd
mailto:luidnel.maignan@gmail.com
http://dx.doi.org/10.1016/j.physd.2008.03.046


F. Gruau et al. / Physica D 237 (2008) 1282–1301 1283

As a result, the number of processing elements (PEs) is steadily
increasing and research in unconventional computing currently
focuses on building hardware on a scale that outreaches today’s
technology. Given such magnitudes, scalability becomes
imperative at the high level: as the number of PEs increases,
does performance increase accordingly? This paper advocates
that the conventional ways of designing parallel hardware
architecture are not appropriate for scaling to arbitrary large
size because too many of the physical level properties are lost
in abstraction. For example, many classical features of parallel
architecture, such as shared memories or all-to-all routers,
design out the notion of space to establish a single Uniform
Memory Architecture (UMA). In shared memories the actual
location of data is not an issue. With all-to-all routers, any two
PEs are considered as being close together. But the performance
of these features cannot be scaled, which is necessary in
larger systems where communication time (to access a single
memory or communicate with another PE) increases with
size. The time required for a signal to travel the length of
the wire is not taken into account.1 The spatial computing
framework identifies space as the key physical property and
proposes to organize hardware resources as a spatially extended
homogeneous computing medium in order to take space into
account and achieve greater scalability. Computation and data
must be distributed in 2D or 3D space and the particular spatial
arrangement must be closely articulated with performance.

The expressiveness problem. At the highest level, the computing
medium must be programmed, i.e. the behavior of each
individual processing element (PE) in space must be described.
This is a difficult task in comparison to programming sequential
machines: there is no centralized control, no overall coherent
memory image of the machine configuration, and no global
clocking. Because of locality in space, each PE communicates
only with its nearby neighbors. Most programs running on
spatial computers implement a single purely spatial algorithm
where input and output data are located in space and
data computation can also take place naturally in space.
This is clearly insufficiently expressive when aiming to use
spatial computing to solve complex tasks involving different
algorithms and data structures. The task is even more difficult
when performance is important.

The blob machine concept proposes to solve the program-
ming problem by using a vertical approach to spatial comput-
ing, i.e. by proposing two levels that gradually abstract space
while never completely ignoring it. Programming is carried out
on an intermediate virtual machine called the blob machine,
whose primitives are based on physics simulation and are suf-
ficiently simple to be implemented on an arbitrary computing
medium. On the one hand this allows the user to program tra-
ditional parallel algorithms without worrying about the exact
spatial location of data and computation. On the other, if the

1 Consider the example of a router where spatial location has been abstracted
away and the router diameter is the measure of router performance. If
the communication time between any pair of PEs does not depend on the
communicating PEs, it necessarily depends on this diameter, which represents
the worst case.

programmed task graph is simple enough, as is the case for a
planar graph, then the runtime system can efficiently map it in
2D space.

The rest of this article is organized in three introductory sub-
sections followed by two sections. Section 1.2 outlines state-
of-the-art spatial computing as a hierarchy of horizontal layers
from hardware to software. Section 1.3 informally introduces
the blob approach and its main features of interest. The
self-mapping property, a significant facet of the blob model,
is described in Section 1.4. After that, Section 2 gives a
formal definition of a simplified blob machine, i.e, the binary
blob machine and the state of the art of its implementation.
The model semantics are described in detail and semantic
confluence is demonstrated. An explanation follows describing
implementation of the blob machine on a computing medium
and defining a complexity model, i.e., “dDcomplexity”, used
to measure performance in the examples of blob execution
presented in Section 3. Those examples have been chosen to
cover a wide range of parallel algorithms. The purpose is to
establish the feasibility of programming and assess the resulting
efficiency. Optimal time and space complexity can be achieved,
as long as implementation meets dDcomplexity requirements.

1.2. Background on spatial computing

Spatial computing is an umbrella term that groups together
different approaches, all based on the observation that future
computing platforms – whether very-large-scale integration
(VLSI), bio, or nano – will consist of a vast number of
Processing Elements (PEs) homogeneously embedded in 2D
or 3D space, where the magnitude involved obliges the
programmer to incorporate the locality constraint, where each
PE has a specific location in space, and communication time
is a function of Euclidean distance in that space. For example,
in the (classic) VLSI complexity model [1], this relationship is
linear. Communication costs have always been a major issue in
parallel computing. But scaling up to an arbitrary large space
is rarely considered as an option, where communication must
be optimized by taking into account physical distance. For
example, a black-box router can be implemented efficiently
in all-to-all communication, but it abstracts away spatial
location. Architectures embedded in space, referred to here as
“computing media”, include not only regular classic models,
such as cellular automata, systolic arrays and FPGAs,2 but
also irregular models where the constraints of lattice tiling of
space and synchronism in time are relaxed, as exemplified in
the amorphous computing model [2]. Spatial computing was
the subject of a recent workshop [3]. A complexity model of
computing media called “spatial machines” is presented in [4].

Spatial computing calls for a departure from computing
in time, which uses a conventional centralized programming
approach with a step-by-step modification of a given overall
state. Intuitively, to exploit space, computation must be

2 Field-Programmable Gate Array. An FPGA architecture can be reconfig-
ured on the fly and therefore be adapted to the dynamic features of the program
it executes.



Download	English	Version:

https://daneshyari.com/en/article/1897953

Download	Persian	Version:

https://daneshyari.com/article/1897953

Daneshyari.com

https://daneshyari.com/en/article/1897953
https://daneshyari.com/article/1897953
https://daneshyari.com/

