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Abstract

We study a deterministic dynamics with two time scales in a continuous state attractor network. To the usual (fast) relaxation dynamics towards
point attractors (“patterns”’) we add a slow coupling dynamics that makes the visited patterns lose stability, leading to an itinerant behavior in the
form of punctuated equilibria. One finds that the transition frequency matrix for transitions between patterns shows non-trivial statistical properties
in the chaotic itinerant regime. We show that mixture input patterns can be temporally segmented by the itinerant dynamics. The viability of a

combinatorial spatio-temporal neural code is also demonstrated.
© 2007 Elsevier B.V. All rights reserved.
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Several complex systems present a non-uniform rate of
change, where stationary states (“patterns”) suddenly lose their
stability and are substituted by new ones. Such punctuated be-
havior has been observed on a wide range of time scales from
evolutionary, economic, social and weather dynamics, to brain
behavior and laboratory devices such as laser cavities [1-3].
Usually this “itinerancy” between states is thought of as “ther-
mal” transitions between deep valleys in a rugged landscape,
possibly in the glassy dynamics regime. Such a process, by def-
inition, is stochastic, so that times of transition and the choice of
the next pattern are random. In this work, we consider the oppo-
site spectrum, of systems where the loss of the pattern stability
is due to internal deterministic mechanisms [4-7]. Of course,
natural systems certainly fall between these two descriptions.

The specific model studied here is a multistable system
where the relevant transitions occur when a stationary state (a
point attractor) loses stability so that the system falls into a new
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point attractor, and so on, forming an itinerant trajectory (see
Fig. 1). The more general case of itinerancy between several
kinds of attractors (limit cycles, torus and low dimensional
chaotic attractors) has also been studied (see, for example, the
special issue [3]).

Our model consists of a continuous state attractor
network [8] storing P patterns with an added slow anti-Hebbian
dynamics [9-11] (which may represent some coupling self-
regulation by negative feedback). The model has a discrete time
parallel dynamics with a full connected network, that is, it is a
mean field coupled maps model:

Si(r + 1) = tanh[y (h; (t) + 1;(1))], (D

where §;, the state of neuroni = 1, ..., N, is a real variable in
the interval [—1, 1], h; is the local field h; () = Z?’zl JijS;(@),
and [; (¢) is an (eventual) external input. The parameter y is the
transfer function gain (in this paper, y = 10). Notice that we
have called the units “neurons” only by convention, since they
could be better interpreted as neural populations or basic units
in a network (like glomeruli in the olfactory system, species in
ecological systems, population of agents in social systems etc.).
With this interpretations, the mean field character present in the
model is more plausible.
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Fig. 1. Schematic phase space showing an itinerant walk between point
attractors.

Eq. (1) defines the dynamics for the fast variables S; (#) given
the coupling matrix J;;. In our model, this matrix is slowly time
dependent:

Ty = I+ 15, )

where there is a constant Hebbian (“correlational”) component
Ji7 that stores P patterns, defining a basic attractor landscape,

and a time dependent anti-Hebbian part Ji? (¢) that modulates
this landscape and produces the escape events.
The Hebbian component has the usual form:
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where £# = {él.“},i =1,...,N;u = 1,..., P, are random
patterns to be stored. For convenience, we use binary random
variables &/ = £1. As usual, we set J;; = 0.

The present state S(¢) of the system modulates the “energy”
landscape (defined by slow variables J;;(7)), so that if the
system is visiting a local minimum, that minimum slowly
loses its stability until it turns into a saddle or a maximum
and an escape event occurs. The change in the attractor
landscape, however, is transient, having only an exponentially
decreasing memory of the past visited states. So, the anti-
Hebbian component has the form

1
S+ = (1 - ;) JH () — %Si(t)sj(f)- “)

The initial condition is Ji‘? (0) = 0. The first term (the “coupling
memory decay”) guarantees that any change produced by
visiting some state vanishes with characteristic time t after the
escape from that state. The second term is the anti-Hebbian
contribution, parametrized by a step size € and scaled by 1/N to
preserve compatibility with Eq. (3). So, the rate of transitions
between patterns (or even the possibility of such transitions)
depends on the two parameters t and €.

The matrix J,.H defines a permanent landscape of attractor
basins that is reversibly modulated but not destroyed by the
anti-Hebbian term. We notice that a similar dynamics has
been studied by Kawamoto and Anderson for the particular
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Fig. 2. Time series of overlap moduli |m*| for P = 10, with ¢ = 0.009,
T =600 and N = 100.
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Fig. 3. Distance between trajectories d(¢) as a function of time. The two
systems have identical initial coupling matrices and differ only in the first
neuron, S} (0) — S} (0)| = 10713,

case P = 2, intending to model visual pattern reversion in
the Necker cube [10]. Here we extend that study to general
number of patterns P. Also Hoshino et al. [11] used a similar
anti-Hebbian dynamics with an asymmetric coupling matrix to
study transitions between fixed points and cycles. Here we are
interested in the chaotic itinerancy phase that already appears
with the simpler Hebbian matrix.

Our results are presented in terms of low dimensional order
parameters (“overlaps”) that measure the correlation (cosine)
between the state vector of the network and the stored patterns,
mu() = YN, S;0E /(IS®IIEH)), where |6#] = /N and
|S(t)| are the vector Euclidean norms. In Fig. 2 we show an
example of time series of the overlaps for P = 10 patterns. We
define an (arbitrary but not crucial) threshold A = 0.8 so that
we consider that a pattern (or its anti-pattern) is being visited
if |m*| > A. The S(¢) trajectory is indeed chaotic, as can be
verified by observing the distance d(¢r) = ZIN(S,- ) — Slf(t))2
between two orbits S(¢) and S'(¢) with very small differences
in initial conditions (Fig. 3).

From the time series one gets the symbolic time series where
there only appears the pattern (if any) being visited (Fig. 4).
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