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a b s t r a c t

In this work we introduce several novel tools for the reduction of errors in parameters estimated with
electrochemical impedance spectroscopy experiments. An optimization strategy is developed that mini-
mizes an estimate of the errors on the parameters while bounding the experimental time. The approach
is also used to reduce experimental time while keeping a bound on the parameter errors. This feature is
particularly critical in systems changing significantly within the experimental time. The paper uses a fuel
cell electrode model to test this methodology and presents a real time algorithm for coupling experiment
with the parameter estimation and experimental optimization.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a powerful
technique used for more than a century [1]. It has been subject
of numerous reviews and textbooks [2–4]. EIS has been used in a
wide range of topics including sensors analysis and optimization
[5], study of dye-sensitized solar cells [6], studies of corrosion [7],
biological applications [8], characterization of novel nano materials
[9], physical chemistry of solids [10,11], lithium ion batteries [12]
and fuel cells [13]. Software packages for the analysis of impedance
data have also emerged, see [14–16].

The typical goal of an EIS experiment is to gather significant
information regarding the physico-chemical phenomena taking
place in an electrochemical device. Typically, a broad frequency
sweep is performed, with a linear or a logarithmic spacing between
maximum and minimum frequency. The measured data is then
compared with a mathematical model that describes the system.
The model can be purely empirical, being composed of resistors,
capacitors, and generalized electrochemical elements, or otherwise
it can be based on the physics of the system. One typically compares
the model and the experimental data by fitting the model against
the data, i.e., by minimizing a functional that measures the dis-
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tance between model and measurement via the complex nonlinear
least squares (CNLS) method. It is clear that errors in the measured
data propagate to the estimated parameters and the distribution
of such errors can be estimated by analytical expressions under
the assumption of “small” errors. We shall assume in this work,
that the method used for fitting the data is (unweighted) complex
nonlinear least-squares and that the design of the experiment can
be optimized in such a way that increases the confidence on the
parameters that define the model. Thanks to this procedure, values
of the relevant physico-chemical the parameters can be obtained
with greater confidence or with a faster experiment.

In an optimized EIS experiment one could aim to reduce the
uncertainty of the parameters for given errors in the measure-
ments or to decrease the experimental time without a significant
increase in uncertainty. This reduction can be achieved systemat-
ically by applying optimal experimental design (OED) [17]. OED
comprises of statistical and numerical methods that optimizes
the design of the experiment so that the physical parameters
are obtained with the greatest statistical confidence. In partic-
ular, reducing experimental time while maintaining low errors
in the estimated parameters could be significant in situations
where uncontrolled fluctuations of the experimental conditions,
e.g., temperature, reference electrode position, occur through the
experiment’s duration, in cases where the systems degrades, and in
non-equilibrium electrochemical systems such as batteries under
bias. It is important to note that time reduction and accuracy are
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often competing objectives. In fact, for a stable system, longer
experimental time will yield more accurate results.

In this work we utilize a physics-based model as an exam-
ple, however, the presented approach is general and can be easily
applied to empirical models, those composed of resistors, capac-
itors, and generalized elements. For example the latter can be
obtained by analyzing the impedance spectra with commonly used
software packages [14,16].

We shall stress that the models used to interpret and identify the
experiment can also be non-unique, meaning that several models
can fit experimental data with comparable residuals [4,18–21], and
there can be errors in some of the “known” parameters used in the
model. Here we disregard those possibilities and assume that the
model describes the physical system precisely. Considering possi-
ble errors in the model, the OED technique can also be used for
model discrimination [22–24], i.e., for comparing different mod-
els which give similar results if tested with standard experimental
procedures.

Lastly, the paper will be outlined as follows: first we introduce
OED (Section 2), second we describe the model of the example
system studied (Section 3), third we review the theory of exper-
imental errors in EIS (Section 4), fourth we apply the OED method
to improve impedance measurements (Section 5), and finally we
present the results of computations on the given example (Section
6). To the best of our knowledge, this is the first time that OED tech-
niques are used to optimize impedance measurements in the field
of electrochemistry.

2. Optimization of model-based experiments

OED has been studied extensively in the field of statistics
[17,25–27] and is frequently used in science and engineering
[28–33]. OED largely relies on statistical inference [34] and on the
sensitivity analysis of the estimated parameters with respect to
perturbations of the data. As stated in the introduction the goal of
OED is to find the experimental conditions that reduce the effects
of measurement inaccuracies on the estimated parameters. In this
sense OED makes the parameter identification less sensitive to
sources of error in the measurements. For this purpose, the link
between the variations of the data and the variations of the esti-
mated parameters has to be determined and optimized. This link is
depicted in Fig. 1. In the traditional approach model and experimen-
tal data are used to estimate parameters via CNLS. It is important
to note that errors in the data and in the estimated parameters are
linked. OED directly exploits this connection and “suggests” more
favorable conditions for increasing the confidence on the parame-
ters.

One of the key ideas of OED is to use asymptotic nonlinear
estimation to approximate the covariance matrix of the estimated
parameters. In order to do that one needs to either assume or
measure the error structure of the experimental data. In our case
relative errors in the amplitude and in the argument of the mea-
sured impedance (see Section 4.2) are considered. The uncertainty
in the measured data induces uncertainty in the estimated param-
eters, i.e., after a fit one should give a mean value for each estimated
parameter and an estimation of the variances. The latter are usu-
ally represented by error bars. A more complete way to describe the
uncertainty is the calculation of the covariance matrix, which gives
not only error bars (the diagonal terms of the matrix) but also the
correlations between the parameters. A large correlation between
two parameters means, that if one of them is known with a large
uncertainty, then the other could be affected as well. The covari-
ance matrix, as explained in Appendix B.3, defines the so-called
confidence region, which under the assumption of “small” nor-
mally distributed errors is depicted by an ellipse (in the case there

are only two parameters) or an ellipsoid (in the case the parame-
ters are more than two). The region inside the ellipse defines the
range of values that the parameters could have due to measurement
errors. To have a pictorial view of the ellipsoidal area we refer back
to elementary statistics [35], and for completeness we depict in
Fig. 2 two Gaussian probability density functions (p.d.f.s) centered
around 0 with covariance matrix V whose analytical expression

is p.d.f. (�) = 1/(2�
√

det(V)) exp
(

−(1/2)�TV−1�
)

and where the

parameter vector is � =
[

�1
�2

]
. In the top row we show the p.d.f.

with V =
[

1 0
0 1

]
, in the bottom panels we depict instead the p.d.f.

with V =
[

0.505 0.495
0.495 0.505

]
. While the former distribution is circu-

larly symmetric, the latter is elongated and preferentially oriented
in the direction [1, 1]T. By drawing points from each of the distri-
butions one obtains that most points lie inside the circle in the first
case and an elongated ellipse in the second case. Both curves are
defined as the points � for which �TV−1� = K where K = 9.1 One typ-
ical goal of OED is to modify the confidence region. Fig. 3 shows
schematically the effect of applying OED in case of two parameters
(�1, �2), where �̂ = (�̂1, �̂2) is the vector of the parameters estimated
via CNLS.

In optimizing EIS, one could use OED to select the frequen-
cies that lead to greater parameter confidence (see Section 6.1).
Another strategy could determine the “best” sample geometry for
the identification of the parameters in the system under study (see
Section 6.2). This is achieved by connecting the error in the mea-
surements with the error on the parameters Fig. 1 and subsequently
by modifying the experimental design � so that the confidence on
the estimated parameters in increased, Fig. 3. Depending on the
experiment, OED can improve in different ways the results of the
nonlinear estimation procedure. Specifically OED can

• decrease the volume of the confidence region;
• decrease the correlation between the parameters;
• optimize the experimental conditions, for example, by decreasing

the overall time of the experiment or allowing to take measure-
ments at more convenient conditions.

The use of the covariance matrix V of the parameters esti-
mates to define the confidence region has been proven useful in
many applications that use nonlinear models [31,36,37]. How-
ever, the direct determination of V, for example via a Monte Carlo
method, would be computationally taxing even for a small num-
ber of parameters. An asymptotic estimate Vasympt of matrix V,
see Appendix C, has a clear computation advantage over Monte
Carlo strategies because the number of computations necessary to
achieve an informative result regarding the covariance matrix is
greatly reduced. In addition, the derivatives of functions of Vasympt

can be easily computed numerically, for example via finite differ-
encing or automatic differentiation [38], and can be used in existing
optimization algorithms to solve an OED problem. We note that this
optimization is rather complex since Vasympt is a nonlinear func-
tion of �, of the measurement error structure, and it depends on
the method used for fitting the data, for details see Appendix C.15
in Appendix C.

The design of an optimal experiment for improving parameter
precision reduces then to minimizing a functional of the asymptotic

1 K = 9 corresponds to assuming that the data will likely fall within 3 standard
deviations of the average value.
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