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Stirring up trouble: Multi-scale mixing measures for steady scalar sources
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Abstract

The mixing efficiency of a flow advecting a passive scalar sustained by steady sources and sinks is naturally defined in terms of the suppression
of bulk scalar variance in the presence of stirring, relative to the variance in the absence of stirring. These variances can be weighted at various
spatial scales, leading to a family of multi-scale mixing measures and efficiencies. We derive a priori estimates on these efficiencies from the
advection–diffusion partial differential equation, focusing on a broad class of statistically homogeneous and isotropic incompressible flows. The
analysis produces bounds on the mixing efficiencies in terms of the Péclet number, a measure of the strength of the stirring relative to molecular
diffusion. We show by example that the estimates are sharp for particular source, sink and flow combinations. In general the high-Péclet-number
behavior of the bounds (scaling exponents as well as prefactors) depends on the structure and smoothness properties of, and length scales in, the
scalar source and sink distribution. The fundamental model of the stirring of a monochromatic source/sink combination by the random sine flow
is investigated in detail via direct numerical simulation and analysis. The large-scale mixing efficiency follows the upper bound scaling (within a
logarithm) at high Péclet number but the intermediate and small-scale efficiencies are qualitatively less than optimal. The Péclet number scaling
exponents of the efficiencies observed in the simulations are deduced theoretically from the asymptotic solution of an internal layer problem
arising in a quasi-static model.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mixing processes in fluids play a key role in a wide variety
of engineering applications and for natural systems such as the
ocean and atmosphere. Their theoretical study has been a major
focus of research, as indicated by the large number of review
articles [1–8]. At the smallest scales mixing is achieved by
molecular diffusion processes, but it may be facilitated greatly
by stirring. The result of stirring is usually to enhance the
effect of molecular diffusion and increase the mixing rate [9–
13]. Quantitative understanding of the fundamental features of
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stirring and its influence on mixing processes is important for
the effective modeling, simulation and design or control of
these systems.

The “efficiency” of mixing means different things in
different contexts. For example the dispersion of an initial
distribution by an imposed flow is a transient problem where the
temporal approach to the final fully mixed state, rather than the
final state itself, is of central interest. Consider for definiteness
the homogeneous advection–diffusion equation for a passive
scalar field θ(x, t) stirred by a divergence-free velocity field
u(x, t),

∂θ

∂t
+ u · ∇θ = κ1θ (1.1)

where κ is the molecular diffusivity. If this equation is supplied
with initial concentration θ(x, 0) and applied in an appropriate
domain without sources, sinks or scalar flux at the boundaries,
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then the integral of θ is conserved, so without loss of generality
it may be taken to vanish from the start. But the L2-norm
‖θ(·, t)‖2, proportional to the scalar variance in finite volume
domains, decreases with time. Indeed, multiplying (1.1) by θ
and integrating by parts,

d
dt

‖θ‖2
2 = −2κ‖∇θ‖2

2, (1.2)

indicating an inexorable decay of the variance. Efficient mixing
in this transient decay problem means faster decay of the scalar
variance. The mixing efficiency of a particular flow could be
defined, for example, in terms of its ability to reduce the
variance from the initial value to a prescribed value within a
specific period of time [14]. Because the right-hand side of
(1.2) is proportional to κ , it is evident that molecular processes
are ultimately responsible for mixing by this criterion. Even
though the stirring field does not appear explicitly in (1.2), the
conventional intuition is that material line stretching in the flow
can amplify scalar gradients thereby enhancing the molecular
mixing rate. Indeed, the velocity’s rate-of-strain matrix serves
as the local growth rate of the scalar gradient field. These issues
are of extreme interest for both theory and applications, but
in this paper we are interested in a distinct scenario where
different effects are at work.

Mixing a scalar field whose fluctuations are constantly
replenished by steady but spatially inhomogeneous sources
and sinks is a problem with a long history. Early on,
Townsend [15,16] was concerned with the effect of turbulence
and molecular diffusion on a line source of temperature,
a heated filament. The spatial localization of the source,
imposed by experimental constraints, enhanced the role of
molecular diffusivity. Saffman [17] also found that molecular
diffusion and turbulent diffusion were not simply additive
and that higher-order corrections were needed. Durbin [18]
and Drummond [19] introduced stochastic particle models to
turbulence modeling, and these allowed more detailed studies
of the effect of the source on diffusion. Sawford and Hunt [20]
pointed out that small sources, such as heated filaments,
lead to an explicit dependence of the variance on molecular
diffusivity. Many refinements to these models followed, see
for instance [21,22] and the review by Sawford [5]. Chertkov
et al. [23–27] and Balkovsky and Fouxon [28] treated the
case of a random, statistically steady source. Our goal in
the present paper is to make the source dependence of
the concentration variance more precise by working directly
from the advection–diffusion equation, without specifying the
underlying turbulent statistics other than basic stationarity and
homogeneity assumptions.

When a source of scalar concentration is present, the
transient kinetics are of less immediate interest and instead
the properties of the (statistical) steady state are of greater
relevance. As will be seen, this sustained steady-state dynamics
highlights other features of stirring and mixing processes. In
comparing the steady-state problem to the transient problem
defined by Eq. (1.2), it is important to remember that the
long-time asymptotic behavior of the decaying problem is
usually irrelevant to the corresponding long-time behavior

of the steady-state problem. This is because the continuous
replenishing of concentration overwhelms small-amplitude
effects observed for long-time decay, such as the ‘strange
eigenmode’ [29–40].

In this paper we consider the stirring and mixing of a
passive scalar sustained by a steady source–sink function s(x).
Given a prescribed divergence-free velocity field u(x, t) and a
molecular diffusivity κ , the scalar concentration θ(x, t) obeys
the inhomogeneous advection–diffusion equation

∂θ

∂t
+ u · ∇θ = κ1θ + s(x) (1.3)

supplemented with initial concentration field θ(x, 0). We
consider a domain without any net scalar flux at the boundaries:
the periodic box of size L , i.e., x ∈ Td , the d-dimensional torus
of volume Ld . The spatial mean of θ is computed immediately,

1
Ld

∫
θ(x, t) dd x =

1
Ld

∫
θ(x, 0) dd x

+ t ×
1

Ld

∫
s(x) dd x, (1.4)

and deviations from the spatial mean satisfy (1.3) with s(x)
replaced by s(x) − L−d ∫ s dd x . So to study the fluctuations
we may assume without loss of generality that θ(x, 0) and s(x),
and thus also θ(x, t) have spatial mean zero.

Fluctuations in the scalar concentration are naturally
measured in terms of the steady-state variance 〈θ2

〉, where
we introduce the space–time average. The two averaging
operations we use are the time average

F(x) := lim
t→∞

1
t

∫ t

0
F(x, t ′) dt ′, (1.5)

assuming as necessary that the limit exists, and the space–time
average

〈F〉 :=
1

Ld

∫
F(x) dd x . (1.6)

Effective stirring makes the scalar field more spatially uniform,
lowering the variance, and this is the basic mixing effect that
we set out to study. Many investigations have been concerned
with other statistical properties of the scalar field for this kind of
model, such as details of the tails of the probability distribution
of θ [2,6]. While these studies present fascinating mathematical
and physical issues, in terms of applications they are most
likely to be of ultimate use in designing closure approximations,
i.e., models of the model, in order to accurately estimate bulk
measures of mixing like variance reduction. In this work we
focus directly on the suppression of the scalar fluctuations as a
primary indicator of mixing.

In terms of the Fourier decomposition of the scalar field,

θ̂k(t) =
1

Ld

∫
θ(x, t) e−ik·x dd x (1.7)
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