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Abstract

Importance sampling Monte Carlo offers powerful approaches to approximating Bayesian updating in sequential problems. Specific classes
of such approaches are known as particle filters. These procedures rely on the simulation of samples or ensembles of the unknown quantities and
the calculation of associated weights for the ensemble members. As time evolves and/or when applied in high-dimensional settings, such as those
of interest in many data assimilation problems, these weights typically display undesirable features. The key difficulty involves a collapse toward
approximate distributions concentrating virtually all of their probability on an implausibly few ensemble members.

After reviewing ensembling, Monte Carlo, importance sampling and particle filters, we present some approximations intended to moderate
the problem of collapsing weights. The motivations for these suggestions are combinations of (i) the idea that key dynamical behavior in many
systems actually takes place on a low dimensional manifold, and (ii) notions of statistical dimension reduction. We illustrate our suggestions in a
problem of inference for ocean surface winds and atmospheric pressure. Real observational data are used.
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1. Introduction

Data assimilation (DA) involves the use of a scientifically-
based numerical prediction model driven by observations.
Consider a state process X and assume the following discrete-
time model

Xt =M(Xt−1) + εt , (1)

where εt is a vector of model errors. The function M is
typically a numerical representation of a dynamical model
developed from physical reasoning, usually represented via a
system of partial differential equations.

We begin with a disclaimer. Efficient DA methods
involve complicated interactions among the form and type
of observations available, the numerical methods used to
formulate and integrate the approximation, and the treatment of
model error. Nevertheless, we will not delve into these issues.
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Rather, general propositions of the problem and general, rather
than case-by-case, approaches are presented here.

To transition to probabilistic or statistical formulations
of DA, consider a time series of state variables X0:T =

(X0, X1, . . . , XT ). Employing a Markov assumption, we have
that the joint density function of X0:T is

p(x0:T ) = p(x0)

T∏
t=1

p(xt |xt−1), (2)

where p generically denotes a probability density function
(PDF) of the indicated argument, while a vertical bar in a term
such as p(xt |xt−1) indicates a conditional PDF, in this case, for
Xt given Xt−1 = xt−1. We follow conventional notation here
in that capitalized letters, such as X, refer to random quantities
and corresponding lower-case versions refer to their possible
values. Note that p(x0) is assumed to be based on all data
through t = 0.

Suppose observations Y1:T = (Y1, . . . , YT ) are available.
(Observing at every model time-step is neither standard, nor

necessary, but we do not introduce extra notation to treat the
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general case.) Assume that the observations (i) are conditionally
independent given X0:T , and (ii) the conditional PDFs of the Yt
depend on x0:T only through xt . These PDFs are denoted by
q(yt |xt ).

Bayes’ Theorem provides a solution to the DA problem
(e.g., [11,14]). Namely, to update the prior model for X0:T
reflected in (2) in light of the observations, we compute the
posterior PDF of X0:T :

p(x0:T |y1:T ) ∝ q(y1:T |x0:T )p(x0:T ) (3)

∝ p(x0)

T∏
t=1

q(yt |xt )p(xt |xt−1). (4)

The first expression is Bayes’ Theorem; the second indicates
simplifications based on the Markov and condition indepen-
dence assumptions of the previous paragraph.

Extending the Markov assumption beyond time T ,
probability theory provides the solution to the prediction or
forecasting problem. For example, to forecast XT +1 based on
data through time T , we compute

p(xT +1|y1:T ) =

∫
p(xT +1|xT )p(xT |y1:T )dxT , (5)

where p(xT |y1:T ) is obtained from (4). If we assume all inputs
on the right-hand-side of (4) are correct and can complete the
calculations, the DA problem is solved. Of course, these are two
very large “If’s”.

1.1. Bayesian sequential updating

The term smoothing refers to the production of p(x0:T |y1:T )

as given in (4), or at least the collection of marginal PDFs
p(x0|y1:T ), p(x1|y1:T ), . . . , p(xT |y1:T ). The results of filtering
are the PDFs p(x1|y1), p(x2|y1:2), . . . , p(xT |y1:T ). In either
case, as in (5), predictive PDFs for times beyond T can be
obtained by integration.

Filtering is by nature sequential; the key is to develop
p(xt |y1:t ) from p(xt−1|y1:t−1). Sequential smoothing moves
from p(x0:t−1|y1:t−1) to p(x0:t |y1:t ).

Derivations of the following facts rely on basic probability
theory. First, the joint PDF of two variables p(x, y) can be
written as

p(x, y) = p(x |y)p(y) = p(y|x)p(x), (6)

which yields Bayes’ Theorem:

p(x |y) = p(y|x)p(x)/p(y). (7)

Second, simply put, conditional PDFs are PDFs. For example,
Bayes’ Theorem holds for conditional PDFs:

p(x |y, z) = p(y|x, z)p(x |z)/p(y|z). (8)

This is foundational in sequential Bayesian analysis. One can
view (8) as a prescription for updating the distribution of x
based on y having previously updated based on z.
Sequential filtering. From Bayes’ Theorem, we have

p(xt |y1:t ) = p(xt |y1:t−1, yt ) ∝ q(yt |y1:t−1, xt )p(xt |y1:t−1).

(9)

Applying conditional independence of the observations over
time, we have

p(xt |y1:t ) ∝ q(yt |xt )p(xt |y1:t−1). (10)

The quantity p(xt |y1:t−1) is a predictive or forecasting PDF
obtained via integration:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1. (11)

In the parlance of DA, (10) corresponds to the analysis step
based on Bayes’ Theorem, and relying on the forecast step (11).
Sequential smoothing. Using the conditional independence of
the data and the Markov assumption, Bayes’ Theorem yields

p(x0:t |y1:t ) ∝ q(yt |xt )q(y1:t−1|x0:t−1)p(xt |xt−1)p(x0:t−1).

(12)

Noting that

p(x0:t−1|y1:t−1) ∝ q(y1:t−1|x0:t−1)p(x0:t−1), (13)

we have

p(x0:t |y1:t ) ∝ q(yt |xt )p(xt |xt−1)p(x0:t−1|y1:t−1). (14)

In some settings, modelers may replace (1) by a
deterministic model and act as if M is known, and hence, the
only unknown is X0. It follows that p(xt |y1:t ) implies p(xs |y1:t )

for all s ≥ 0, though the calculations may be unpleasant in
high dimensions. See Berliner [3] for some general discussion
of issues for highly nonlinear, or “chaotic”,M.

While the theory provides a target for analysis, it is rarely
implementable in practice. An exception to this difficulty is
the Kalman Filter (KF), which is known to be an exact
Bayesian procedure under linear and Gaussian assumptions. A
useful approximate procedure in the presence of nonlinearity
is the extended KF in which one linearizes M. See West and
Harrison [16] for a general review. Another interesting direction
is the Ensemble KF (e.g., [8,9]).

Our main interest here is classes of procedures known as
Particle Filters. The underlying idea behind these procedures
is the combination of Monte Carlo sampling and discrete
approximation to the Bayes’ Theorem. At a given time,
Monte Carlo samples or ensembles are generated from an
approximation to the current distribution. The probabilities of
the elements or particles in the ensemble are updated based
on data. That is, the particles are weighted in a fashion that
mimics Bayes’ Theorem. Unfortunately, in high dimensions or
as time evolves, these weights typically collapse to favor just
a few or even one of the particles. We amplify on this issue in
Section 3.3.

1.2. Outline

Section 2 provides an overview of the fundamental bases
of Monte Carlo as an approach to ensemble forecasting. The
critical notion of importance sampling is developed. Section 3
begins with a brief review of classes of sequential, importance
sampling Monte Carlo approaches generally known as particle
filters. That section concludes with remarks concerning the
value of such methods in processing complex data and their
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