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Abstract

In the framework of the Tulin model of supercavitating flow, the problem of reconstructing the free surface of a channel and the shapes of the
cavities behind two hydrofoils placed in an ideal fluid is solved in closed form. The conformal map that transforms a parametric plane with three
cuts along the real axis into the triple-connected flow domain is found by quadratures. The use of the theory of Riemann surfaces (the Schottky
doubles) enables the non-linear model problem to be reduced to two separate Riemann–Hilbert problems on a hyperelliptic surface of genus two.
The solution to the first problem is a rational function with certain zeros and poles on a Riemann surface. The second problem is solved in terms
of singular integrals with the Weierstrass kernel. The essential singularities of the solution at the infinite points of the surface due to a pole of the
kernel are removed by solving a real analogue of the Jacobi inversion problem on the surface. The unknown parameters of the conformal map are
recovered from a system of certain algebraic and transcendental equations.
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1. Introduction

When an obstacle is placed stationary in a moving fluid the
flow breaks away from the barrier along separating streamlines,
and a wake (a “dead-zone”) forms behind the obstacle. In the
case of high-speed flow the wake becomes a vapor-filled cavity.
For water under atmospheric pressure for example, this occurs
when the speed is 100 f/s or more (lower speeds under reduced
pressure) [1]. Cavitating flow has been studied intensively since
marine engineers at the end of the 19th century became aware
of the serious problem due to cavitation: an increase in pressure
causes the cavities to collapse and release energy resulting in a
force which may damage submarine propellers when they are
operating at certain depths. Cavitation has long been of interest
not only in the field of shipbuilding and hydraulic machinery,
but also in chemical processing, nuclear physics and medicine
(potential bioeffects of ultrasound caused by acoustic cavitation
in blood vessels).
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Modeling of cavitation is based on the results by Brillouin
(1911) (see, e.g. [1]) who proved that the maximum velocity
must be attained on the free surface and also that the boundary
of a cavity is convex. Good references to the theory of cavitating
flow around obstacles are [1–3]. Tulin [4] proposed a model of
the cavitating flow which admits the presence of the singularity
of the solution at the point say, C , where the two streamlines
along the cavity attempt to close it, namely,

log(dw/dz) ∼ K (w − w0)
−1/2,

z → C, K = const, (1.1)

where w0 = w(C), w = w(z) is the complex potential of
the motion. This condition extends the class of solutions to
the governing boundary-value problem which makes possible
to reconstruct a flow that meets the condition∮

L
dz = 0, (1.2)

and is therefore single-valued. Here L is the boundary of the
cavity combined with the boundary of the hydrofoil.
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For model problems of cavitating flow, numerical and
analytical methods are employed. The former technique
requires the solution of associated integral equations with the
contour to be recovered. The analytical methods for the study
of cavitating flow in simply- and double-connected domains are
well developed [1,3,5]. These methods are based on the use of a
Schwarz–Christoffel transformation to map a circle, a quadrant,
or a plane with a cut (simply-connected flow), or an annulus, a
rectangular, or a plane with two cuts on the real axis (double-
connected flow) into the flow domain. A closed-form solution
to the model problem can then be found in terms of elementary
and elliptic functions for a simply- and double-connected flow,
respectively.

In the case of free boundary problems in a triple-
connected flow domain, the problem of fluid mechanics can be
formulated [6] as the Hilbert boundary-value problem with a
piecewise constant coefficient on three cuts along the real axis.
The actual problem solved in [6] concerned non-cavitating flow
of a fluid around a single foil in a half-plane with a free surface.
A method of Riemann surfaces for an elasticity problem [7]
on a system of cracks along an interface with mixed boundary
conditions was extended for the problem of cavitating flow in
the whole plane around three foils [8].

In this paper we model the steady flow of an ideal fluid
in a channel with a free surface when two plates are held
stationary. The main mathematical tool used is the method
of the Riemann–Hilbert problem on a Riemann surface. This
technique was applied and developed [9–11] for the solution
of model problems of acoustic and electromagnetic scattering
from a perforated sandwich panel and an anisotropic impedance
half-plane. In Section 2 we formulate the problem using the
non-linear model of cavitating flow by Tulin. Section 3 maps
the problem into two Hilbert problems on three cuts on the
real axis. One of the cuts is the image of the boundary of the
channel (a portion of it is a free boundary and therefore is
unknown). The other two cuts are the images of the cavities
whose boundaries formed by the hydrofoils and the unknown
convex contours. The derivative of the conformal map z =

f (ζ ) is represented as a quotient of two functions, dw/dz
and dw/dζ , where w is a complex potential of the flow. In
Section 4 the function dw/dζ is found as a rational function
with certain zeros and poles on a hyperelliptic surface of genus
two. To define the function ω(ζ ) = log(V −1

∞ dw(z)/dz) (V∞

is the speed at infinity), in Section 5 we reduce the Hilbert
problem on the three cuts with a piecewise constant coefficient
to the Riemann–Hilbert problem on the Riemann surface
introduced in Section 4. Its solution is found by quadratures
in terms of singular integrals with the Weierstrass kernel.
Initially, it has an inadmissible exponential growth at infinity.
The conditions which make the solution bounded at infinity
are written as the Jacobi inversion problem for hyperelliptic
integrals. This non-linear problem requires finding two points
on the surface and four integers. The solution of the Jacobi
problem is found in closed form by reducing it to a system
of two algebraic equations with the right-hand side expressed
through the Riemann θ -function of the surface. Section 6 writes
down additional conditions to be satisfied in order to fix 21

Fig. 1. Flow domain D.

unknown real parameters. The system of equations for the
unknowns consists of 8 linear and 13 non-linear relations which
are algebraic and transcendental equations. Finally, equations
of the free surface of the channel and the boundaries of the two
cavities are found by quadratures.

2. Formulation

Let two hydrofoils B1 D1 and B2 D2 (Fig. 1) be placed in
an incompressible gravity-free fluid which is moving steadily
and irrotationally in a channel. The bottom {−∞ < x < ∞,

y = 0} of the channel is solid, and its upper boundary is a
free surface. Far away from the hydrofoils, the flow is uniform
with velocity v = (V∞, 0) across the channel of depth h. It is
assumed that at the ends B j and D j ( j = 1, 2) the jets break
away from the hydrofoils, and cavities B j C j D j ( j = 1, 2)
form behind the foils. The cavities are convex and bounded
but not closed. The unknown boundaries of the cavities are
streamlines. In the framework of the model considered, the
velocity vector is constant and prescribed on the boundaries
of the cavities (the constants are not necessarily the same).
The loops A j B j C j D j A j are smooth in a neighborhood of the
points B j and D j . At the stagnation points A j (unknown a
priori), the flow branches and the velocity vector vanishes.

Under these assumptions, the model problem of fluid
mechanics is reduced to that of finding a complex potential of
the motion w(z) = φ + iψ in the 3-connected domain say,
D, occupied by the fluid (the physical domain), together with
boundary conditions of the form

Imw(z) =

{
W ±

0 , z ∈ E±

1 E±

2
W j , z ∈ L j ,

j = 1, 2,∣∣∣∣dwdz

∣∣∣∣ =

{
V∞, z ∈ E+

1 E+

2
V j , z ∈ B j C j D j ,

j = 1, 2,

arg
dw
dz

=

0, z ∈ E−

1 E−

2
−α j , z ∈ A j B j
π − α j , z ∈ A j D j ,

j = 1, 2. (2.1)

Here W ±

0 and W j ( j = 1, 2) are some constants, dw/dz =

vx − ivy , vx and vy are the velocity components, V j are positive
constants defined by the Bernoulli equation

1
2
(V 2

j − V 2
∞)+

p j − p∞

ρ
= 0, j = 1, 2, (2.2)

p∞ and p j are the pressure at infinity and in the cavities,



Download	English	Version:

https://daneshyari.com/en/article/1898093

Download	Persian	Version:

https://daneshyari.com/article/1898093

Daneshyari.com

https://daneshyari.com/en/article/1898093
https://daneshyari.com/article/1898093
https://daneshyari.com/

