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Jacobi fields on statistical manifolds of negative curvature
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Abstract

Two entropic dynamical models are considered. The geometric structure of the statistical manifolds underlying these models is studied. It
is found that in both cases, the resulting metric manifolds are negatively curved. Moreover, the geodesics on each manifold are described by
hyperbolic trajectories. A detailed analysis based on the Jacobi equation for geodesic spread is used to show that the hyperbolicity of the manifolds
leads to chaotic exponential instability. A comparison between the two models leads to a relation among statistical curvature, stability of geodesics
and relative entropy-like quantities. Finally, the Jacobi vector field intensity and the entropy-like quantity are suggested as possible indicators of
chaoticity in the ED models due to their similarity to the conventional chaos indicators based on the Riemannian geometric approach and the
Zurek–Paz criterion of linear entropy growth, respectively.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Entropic Dynamics (ED) [1] is a theoretical framework con-
structed on statistical manifolds to explore the possibility that
laws of physics, either classical or quantum, might be laws of
inference rather than laws of nature. It is known that thermo-
dynamics can be obtained by means of statistical mechanics
which can be considered as a form of statistical inference [2]
rather than a pure physical theory. Indeed, even some features
of quantum physics can be derived from principles of infer-
ence [3]. Finally, recent research considers the possibility that
Einstein’s theory of gravity is derivable from general principles
of inductive inference [4]. Unfortunately, the search for the cor-
rect variables that encode relevant information about a system
is a major obstacle in the description and understanding of its
evolution. The manner in which relevant variables are selected
is not straightforward. This selection is made, in most cases,
on the basis of intuition guided by experiment. The Maximum
relative Entropy (ME) method [5–7] is used to construct ED
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models. The ME method is designed to be a tool of inductive
inference. It is used for updating from a prior to a posterior
probability distribution when new information in the form of
constraints becomes available. We use known techniques [1] to
show that this principle leads to equations that are analogous to
equations of motion. Information is processed using ME meth-
ods in the framework of Information Geometry (IG) [8] that
is, Riemannian geometry applied to probability theory. In our
approach, probability theory is a form of generalized logic of
plausible inference. It should apply in principle, to any situa-
tion where we lack sufficient information to permit deductive
reasoning.

In this paper, we focus on two special entropic dynamical
models. In the first model (ED1), we consider a hypothetical
system whose microstates span a 2D space labelled by the
variables x1 ∈ R+ and x2 ∈ R. We assume that the only
testable information pertaining to the quantities x1 and x2
consists of the expectation values 〈x1〉, 〈x2〉 and the variance
∆x2. In the second model (ED2), we consider a 2D space of
microstates labelled by the variables x1 ∈ R and x2 ∈ R. In this
case, we assume that the only testable information pertaining
to the quantities x1 and x2 consists the expectation values
〈x1〉 and 〈x2〉 and of the variances ∆x1 and ∆x2. Our models
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may be extended to more elaborate systems (highly constrained
dynamics) where higher dimensions are considered. However,
for the sake of clarity, we restrict our considerations to the
above relatively simple cases. Given two known boundary
macrostates, we investigate the possible trajectories of systems
on the manifolds. The geometric structure of the manifolds
underlying the models is studied. The metric tensor, Christoffel
connections coefficients, Ricci and Riemann curvature tensors
are calculated in both cases and it is shown that in both cases
the dynamics takes place on negatively curved manifolds. The
geodesics of the dynamical models are hyperbolic trajectories
on the manifolds. A detailed study of the stability of such
geodesics is presented using the equation of geodesic deviation
(Jacobi equation). The notion of statistical volume elements
is introduced to investigate the asymptotic behavior of a one-
parameter family of neighboring geodesics. It is shown that
the behavior of geodesics on such manifolds is characterized
by exponential instability that leads to chaotic scenarios on the
manifolds. These conclusions are supported by the asymptotic
behavior of the Jacobi vector field intensity. Finally, a relation
among entropy-like quantities, instability and curvature in the
two models is presented.

2. Curved statistical manifolds

In the case of ED1, a measure of distinguishability among
the states of the system is achieved by assigning a probability
distribution p(Ex |Eθ) to each state defined by expected values
θ
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(2)
2 of the variables x1, x2 and (x2 − 〈x2〉)

2. In the
case of ED2, one assigns a probability distribution p(Ex |Eθ) to
each state defined by expected values θ
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2. The process of
assigning a probability distribution to each state provides the
statistical manifolds of the ED models with a metric structure.
Specifically, the Fisher–Rao information metric [9–12] defined
in (7) is used to quantify the distinguishability of probability
distributions p(Ex |Eθ) that live on the manifold (the family of
distributions {p(tot)(Ex |Eθ)} is as a manifold, each distribution
p(tot)(Ex |Eθ) is a point with coordinates θ i where i labels the
macrovariables). As such, the Fisher–Rao metric assigns an IG
to the space of states.

2.1. The statistical manifoldMS1

Consider a hypothetical physical system evolving over a
2D space. The variables x1 ∈ R+ and x2 ∈ R label the
2D space of microstates of the system. We assume that all
information relevant to the dynamical evolution of the system
is contained in the probability distributions. For this reason,
no other information (such as external fields) is required. We
assume that the only testable information pertaining to the
quantities x1 and x2 consists of the expectation values 〈x1〉, 〈x2〉

and the variance ∆x2. Therefore, these three expected values
define the 3D space of macrostates MS1 of the ED1 model.
Each macrostate may be thought as a point of a 3D statistical
manifold with coordinates given by the numerical values of the
expectations θ
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written in the form of the following constraint equations,
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distributions p1 and p2 are constrained by the conditions of
normalization,∫
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Information theory identifies the exponential distribution as
the maximum entropy distribution if only the expectation
value is known. The Gaussian distribution is identified as
the maximum entropy distribution if only the expectation
value and the variance are known. ME methods allow us to
associate a probability distribution p(tot)(Ex |Eθ) to each point
in the space of states. The distribution that best reflects the
information contained in the prior distribution m(Ex) updated by
the constraints (〈x1〉, 〈x2〉,∆x2) is obtained by maximizing the
relative entropy[
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where m(Ex) ≡ m is the uniform prior probability distribution.
The prior m(

→
x ) is set to be uniform since we assume the lack

of initial available information about the system (postulate of
equal a priori probabilities). Upon maximizing (3), given the
constraints (1) and (2), we obtain
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where θ
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2 = σ2. The probability

distribution (4) encodes the available information concerning
the system andMs1 becomes,
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