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Abstract

We study the stability of a stochastic oscillator whose frequency is a random process with finite time memory represented by an
Ornstein–Uhlenbeck noise. This system undergoes a noise-induced bifurcation when the amplitude of the noise grows. The critical curve, that
separates the absorbing phase from an extended non-equilibrium steady state, corresponds to the vanishing of the Lyapunov exponent that measures
the asymptotic logarithmic growth rate of the energy. We derive various expressions for this Lyapunov exponent by using different approximation
schemes. This allows us to study quantitatively the phase diagram of the random parametric oscillator.
c© 2006 Published by Elsevier B.V.
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1. Introduction

Noise can modify drastically the phase diagram of a
dynamical system [1–3]. Because of stochastic fluctuations of
the control parameter, the critical value of the threshold can
change and noise can delay or favor a phase transition [4]. In the
first case, randomness can be useful as a stabilizing mean and
in the second, noise may help trigger a phase transition that is
otherwise very difficult to achieve; for example, in the dynamo
effect, the role of the noise generated by fluid turbulence
is not well understood at present and it is possible that the
critical magnetic Reynolds number decreases with noise [5].
In certain cases, a physical system subject to noise undergoes
bifurcations into states that have no deterministic counterparts:
the stochastic phases generated by randomness have specific
characteristics (such as scaling behavior or critical exponents)
that define new universality classes [6,7].

One of the simplest systems that can be used as a paradigm
for the study of noise-induced phase transitions is the random
frequency oscillator [8,9]. For instance, in practical engineering
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problems, the Duffing oscillator with random frequency has
been used as a model to study stability of structures subject
to random external forces, such as earthquakes, wind or
ocean waves [10–13]. Whereas a deterministic oscillator with
damping evolves towards the unique equilibrium state of
minimal energy, the behavior changes if the frequency of
the oscillator is a time-dependent variable. Due to continuous
energy injection into the system through the frequency
variations, the system may sustain non-zero oscillations even
in the long time limit. The case when the frequency is a
periodic function of time is the classical problem of parametric
resonance known as the Mathieu oscillator; the phase diagram
is obtained by calculating the Floquet exponents defined as the
characteristic growth rates of the amplitude of the system [14].
When the frequency of the pendulum is a random process, the
role of the Floquet exponents is taken over by the Lyapunov
exponents [15,16]. The system undergoes a bifurcation when
the largest Lyapunov exponent, defined as the growth rate of the
logarithm of the energy, changes its sign. Thus, the Lyapunov
exponent vanishes on the critical surface that separates the
phases in the parameter space. This criterion involving the sign
of the Lyapunov exponent has a firm mathematical basis and
clarifies the ambiguities that were found in the study of the
stability of higher moments [15,17].
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In a recent work [18], we have carried out an analytic study
of the phase diagram of the random oscillator driven by a
Gaussian white noise frequency. We have shown [19] that, in
the case of an inverted pendulum, the unstable fixed point can
be stabilized by noise and a noise-induced reentrant transition
occurs. These results are based on an exact formula for the
Lyapunov exponent [20–22]. In the present work, we intend
to study the phase diagram of an oscillator whose frequency
is a random process with finite time memory. More precisely,
we consider here the case of an Ornstein–Uhlenbeck noise of
correlation time τ . From a physical point of view, the influence
of a finite correlation time on the phase diagram is an interesting
open question: does a finite correlation time favor or hinder a
noise-induced transition? In particular, we wish to determine
how the shape of the transition curve is modified when the noise
is colored. In the white noise case, the asymptotic behavior of
the critical curve when the amplitude of noise is either very
small or very large is known explicitly and presents a simple
scaling behavior [18]. How do these scalings change when the
noise is correlated in time?

Due to the finite correlation time of the noise, the random
oscillator is a non-Markovian random process and there exists
no closed Fokker–Planck equation that describes the dynamics
of the Probability Distribution Function (PDF) in the phase
space. This non-Markovian feature hinders an exact solution
in contrast with the white noise case where a closed formula
for the Lyapunov exponent was found. We shall therefore
have to rely on various approximations to carry out an
analytical study of the phase diagram. The results obtained
by different approximations will be compared with numerical
results and with an exact small noise perturbative expansion.
The various approximations have different regions of validity in
the parameter space: this allows us to derive a fairly complete
picture of the phase diagram of the random oscillator subject to
an Ornstein–Uhlenbeck multiplicative noise.

The outline of this work is as follows. In Section 2,
we derive general results about the stochastic oscillator with
random frequency: thanks to dimensional analysis, we reduce
the dimension of the parameter space from four to two and
show how the Lyapunov exponent can be calculated by using an
effective first order Langevin equation; we also recall the exact
results for white noise. In Section 3, we rederive the rigorous
functional evolution equation of PDF; although this equation
is purely formal and is not closed (it involves a hierarchy of
correlation functions), it will be used as a systematic basis for
various approximations; we also carry out an exact perturbative
expansion of the Lyapunov exponent in the small noise limit. In
Section 4, we consider a mean-field type approximation known
as the ‘decoupling Ansatz’ which provides a simple expression
for the colored noise Lyapunov exponent in terms of the white
noise Lyapunov exponent. In Section 5, we consider two small
correlation time approximations that both lead to an effective
Markovian evolution: we show that these approximations are
fairly accurate in the small noise regime. In Section 6, we
investigate the large correlation time limit by performing an
adiabatic elimination: this approximation is quite suitable for

the large noise regime. The last section is devoted to a synthesis
and a discussion of our results.

2. General results

2.1. The random harmonic oscillator and the Lyapunov
exponent

A harmonic oscillator with a randomly varying frequency
can be described by the following equation

d2x

dt2 + γ
dx

dt
+ (ω2

+ ξ0(t))x = 0, (1)

where x(t) is the position of the oscillator at time t , γ the
(positive) friction coefficient and ω the mean value of the
frequency. We assume that the frequency fluctuations ξ(t) are
modelized by an Ornstein–Uhlenbeck process of amplitude D0
and of correlation time τ0. The long time behavior of x(t) is
characterized by the Lyapunov exponent defined as
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where the brackets 〈〉 indicate an averaging over realizations of
the noise between 0 and t , i.e., an averaging with respect to the
Probability Distribution Function (PDF) Pt (x, ẋ); the quantity
E is the energy of the system.

Taking the time unit to be ω−1, we obtain the following
dimensionless parameters,

α =
γ

ω
, D1 =

D0

ω3 , τ1 = ωτ0. (3)

In terms of these parameters, Eq. (1) becomes

d2x

dt2 + α
dx

dt
+ (1 + ξ(t))x = 0. (4)

The Ornstein–Uhlenbeck noise ξ(t) now has an amplitude
D1 and a correlation time τ1 and can be generated from the
following linear stochastic differential equation:

dξ(t)

dt
= −

1
τ1

ξ(t) +
1
τ1

η(t), (5)

η(t) being a Gaussian white noise of zero mean value and of
amplitude D1. In the stationary limit, ξ(t) has exponentially
decaying time correlations:

〈ξ(t)ξ(t ′)〉 =
D1

2τ1
exp(−|t − t ′|/τ1). (6)

When τ1 → 0, the process ξ(t) becomes identical to the white
noise. In terms of the dimensionless parameters, the Lyapunov
exponent is given by

Λ(ω, γ,D0, τ0) = ωΛ(α,D1, τ1). (7)
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