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h i g h l i g h t s

• We study the regularized Schamel equation.
• Existence of a one-parameter family of periodic traveling-wave solutions is proved.
• Orbital stability in the energy space is provided.
• Global well-posedness for the Cauchy problem in the energy space is established.
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a b s t r a c t

In this work we study the orbital stability of periodic traveling-wave solutions for dispersive models. The
study of traveling waves started in the mid-18th century when John S. Russel established that the flow of
water waves in a shallow channel has constant evolution. In recent years, the general strategy to obtain
orbital stability consists in proving that the traveling wave in question minimizes a conserved functional
restricted to a certain manifold. Although our method can be applied to other models, we deal with the
regularized Schamel equation, which contains a fractional nonlinear term. We obtain a smooth curve
of periodic traveling-wave solutions depending on the Jacobian elliptic functions and prove that such
solutions are orbitally stable in the energy space. In our context, instead of minimizing the augmented
Hamiltonian in the natural codimension two manifold, we minimize it in a ‘‘new’’ manifold, which is
suitable to our purposes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper sheds new contributions in the sense of obtaining
orbital stability of periodic travelingwaves for nonlinear dispersive
models. Although, we pay particular attention to the regularized
Schamel equation,

ut − uxxt + (u + |u|3/2)x = 0, (1.1)

such ideas can be applied to a large class of dispersive models
(see [1,2]).

The Korteweg–de Vries (KdV) equation,

ut + uxxx +
1
2
(u2)x = 0, (1.2)
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the regularized long-wave or Benjamin–Bona–Mahony (BBM)
equation

ut − uxxt +


u +

1
2
u2


x
= 0, (1.3)

and their various modifications are widely usedmodels describing
the propagation of nonlinear waves. Originally, (1.3) was derived
by Benjamin, Bona, and Mahony in [3] as an alternative model to
the KdV equation for small-amplitude, long wavelength surface
water waves.

For one hand, (1.1) can be viewed as a regularized version of the
Schamel equation

ut + uxxx + (u + |u|3/2)x = 0, (1.4)

in much the same way that the BBM equation can be regarded as
a regularized version of the KdV equation. Eq. (1.4) was derived
by Schamel [4,5] as a model to describe the propagation of weakly
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nonlinear ion acoustic waves which are modified by the presence
of trapped electrons.

Both KdV and BBM equations also model the one dimensional
waves in a cold plasma (see e.g., [6]), with the difference that
BBM equation describes much better the behavior of very short
waves (see also [7]). The approach in [6] is based on the use of
approximateHamiltonians. So, depending on the region of validity,
a new equation for nonlinear ion waves is obtained. In a general
setting, the canonical equations for one-dimensional waves, in
dimensionless form, read as

ut − uxxt = −∂x
δHa

δv
,

vt − vxxt = −∂x
δHa

δu
,

(1.5)

where Ha = Ha(u, v) is the approximate Hamiltonian and u
and v are related to the ion mass density and ion mass velocity,
respectively. If we take the Hamiltonian to be

Ha =
1
2

 
u2

+ v2 +
4
5
sgn(u)|u|5/2


dx

we see that (1.5) reduces to
ut − uxxt = −∂x(v),

vt − vxxt = −∂x(u + |u|3/2). (1.6)

By putting u+v = w, u−v = z, adding the equations in (1.6), and
neglecting z, we find (up to constants) the BBM-like approximation
for unidirectional waves as in (1.1) (in the variablew).

Remark 1.1. Although we will not discuss here, the region of
validity of Ha can be addressed as in [8]. It is to be observed that
the approximate Hamiltonian may be corrected to

Ha =
1
2

 
u2

+ v2 + uv2 +
4
5
sgn(u)|u|5/2


dx.

By following the above steps, we obtain the equation

wt − wxxt = −∂x(w + aw2
+ b|w|

3/2), (1.7)

where a and b are real constants. The nonlinearity appearing in
(1.7) is in agreement with [5] (see also [9] and references therein
for more recent results in this direction), where the author ob-
served that in some physical situations, the nonlinearity in (1.4)
should be corrected to (u2

+ |u|3/2)x. Following the ideas of our
work, one can also study the existence and orbital stability of pe-
riodic traveling waves to (1.7).

Eqs. (1.1) and (1.4) as less studied than (1.3) and (1.2), mainly
because the fractional power in the nonlinear part brings a lot of
difficulties which, in several aspects, cannot be handled with stan-
dard techniques. We point out, however, that the spectral stability
of periodic traveling-wave solutions for (1.4) was studied in [10].

From the mathematical point of view, the generalized BBM
equation

ut − uxxt + (f (u))x = 0 (1.8)

has become a major topic of study in recent years and much ef-
fort has been expended on various aspects of (1.8). The issues in-
clude the initial-value (initial–boundary-value) problem, existence
and stability of solitary and periodic traveling waves and global
behavior of solutions. Thus, (1.1) can also be viewed as (1.8) with
f (u) = u + |u|3/2. In this context, (1.1) has appeared, for instance,
in [11] where the authors study the initial-value problem in the
usual L2-based Sobolev spaces and the nonlinear stability of soli-
tary traveling waves (see also [12–14] and references therein).

Our main goal in this work is to establish the existence
and orbital stability of an explicit family of periodic traveling-
wave solutions associated with (1.1). The traveling waves we are
interested in are of the form u(x, t) = φ(x − ct), where φ is a
periodic function of its argument and c > 1 is a real parameter
representing the wave speed. By replacing this form of u in (1.1),
one sees that φ must solve the nonlinear ODE

− cφ′′
+ (c − 1)φ − φ3/2

+ A = 0, (1.9)
where A is an integration constant.

The constant A in (1.9) plays a crucial role in the theory
of nonlinear stability. Indeed, assume we are dealing with an
invariant by translation Hamiltonian nonlinear evolution equation
of the form ut = J∇E(u), where E is the energy functional. Suppose
the associated periodic traveling waves satisfy a conservative
equation like

− φ′′
+ h(φ, c, A) = 0, (1.10)

for some smooth function h. Here c represents the wave speed and
A is an arbitrary constant. On one hand, when A = 0 the, by now,
classical stability theories [15–18] pass to showing that φ is a local
minimum of E restrict to a suitable manifold depending on the
conserved quantity originated by translation invariance, say, Q . At
this point, the coercivity of the functional F = E + cQ develops
a fundamental role and many works concerning the stability of
periodic waves have appeared in the literature (see e.g., [1,19–30]
and references therein). On the other hand, the situation when
A ≠ 0 is a little bit more delicate; the minimization of F is not
enough to produce the desired results and, in general, we need to
add an extra conserved quantity to F . Thus, it is reasonable towork
with a functional having the form F = E + cQ + AV , where V is
another conservation law. The quantity V in general does not come
from an invariance of the equation. As a consequence, the theories
mentioned above cannot be directly applied and this forces us to
revisit its core in order to cover the nonlinear stability in such
situations (see also [21,25]).

Although in a different way, the case A ≠ 0 was addressed,
for instance in [13,31,32], where the orbital stability of a three- or
two-parameter family of periodic traveling waves associated with
KdV-type and generalized BBM equations were established (see
also [25]). In these works, the authors do not use the explicit form
of the waves and prove the existence of local families of traveling
waves by using the standard theory of ODE’s. Their method has the
advantage that it avoids a lot of hard calculations which appear
when explicit solutions are studied. However, aswewill see below,
our approach has the advantage that we can prove the needed
spectral properties in a very simple way.

Let us now turn attention to themain steps of our constructions.
As we already mentioned, our aim consists in making some
changes in the classical theories developed in [15–17], in order to
deal with explicit periodic solutions of (1.9) obtained when A ≠ 0.
With this in mind, we prove that (1.9) has a solution of the form

φ(ξ) = (α + βCN2(γ ξ, k))2,
where CN denotes the Cnoidal Jacobi elliptic function, k ∈ (0, 1)
represents the elliptic modulus and α, β , and γ are suitable
constants depending, a priori, on c and A. After some algebraic
manipulations, one can write all parameters in terms of k, so that
a smooth curve of explicit L-periodic solutions k ∈ J → φk can be
obtained. In particular, the parameters c and A can also be written
as functions of k.

The conserved quantities appearing here are

E(u) =
1
2

 L

0


u2
x −

4
5
sgn(u)|u|

5
2


dx,

Q (u) =
1
2

 L

0
(u2

+ u2
x)dx,

(1.11)
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