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a b s t r a c t

The non-linear non-equilibrium nature of shock waves in gas dynamics is investigated for the planar
case. Along each streamline, the Euler equations with non-equilibrium pressure are reduced to a set of
ordinary differential equations defining a slow–fast system, and geometric singular perturbation theory
is applied. The proposed theory shows that an orbit on the slow manifold corresponds to the smooth
part of the solution to the Euler equation, where non-equilibrium effects are negligible; and a relaxation
motion from the unsteady to the steady branch of the slowmanifold corresponds to a shock wave, where
the flow relaxes from non-equilibrium to equilibrium. Recognizing the shock wave as a fast motion is
found to be especially useful for shock wave detection when post-processing experimental measured
or numerical calculated flow fields. Various existing shock detection methods can be derived from the
proposed theory in a rigorousmathematicalmanner. The proposed theory provides a new shock detection
method based on its non-linear non-equilibrium nature, andmay also serve as the theoretical foundation
for many popular shock wave detection techniques.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mathematically, a shock wave is defined as the discontinuity of
the solution of hyperbolic conservation [1, p. 15]. In gas dynam-
ics, the specific form of the conservation law is the Euler equation,
which is an inviscid simplification of the dissipativeNavier–Stokes’
equation with Fourier’s law, or the NSF model. The physical struc-
ture of a shock wave is complicated due to the thermodynamically
non-equilibrium processes within it [2–5]. Even the NSF model is
invalid in physical shock waves because the continuum assump-
tion does not hold for non-equilibriumprocess. However, the Euler
system can successfully describe this phenomenon, as described
by Majda [6, p. 8]. The jump (Rankine–Hugoniot) condition cou-
pled with an appropriate entropy condition is introduced to the
Euler system to ‘‘incorporate the effects of the small scale diffusion
on the large scale quantities without resolving the small scale ef-
fects in detail’’. The complicated non-equilibrium process can be
well approximated by the jump condition, which is a set of equa-
tions. If diffusion effects are included, a shock wave becomes a
thin regionwith extremely large gradients of flow variables, which
leads to a finer description of the shock wave, and carefully mod-
eled diffusion effects could produce an accurate resolution of shock
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wave structure, although the NSF model is physically invalid in
the shock region [3]. The corresponding mathematical terminol-
ogy is shock layer or viscous shock profile, which is discussed in
[1, pp. 265–269] and the references therein, including the classical
papers by Weyl [7], Gilbarg [8] and the multidimensional discus-
sions by Guès et al. [9–11].

The viscous model can provide a better description for a shock
wave as well as better mathematical properties, including exis-
tence, uniqueness, regularity, and ease of numerical scheme [12].
For consistency, a shock layer defined by the viscous NSF model,
with vanishing viscosity and heat conductivity, should converge to
the shockwave defined by the corresponding Euler equations in an
appropriate sense. According to Dafermos [1, pp. 517–543], this is
valid for the one-dimensional condition, where the solution of the
equations with dissipation can be shown to converge boundedly
almost everywhere to the solution of the inviscid equations. How-
ever, the situation becomes rather complicated for higher dimen-
sionality, since the present mathematical theory for Euler systems
in several space dimensions remains unresolved. Rigorous theory
is only available for special cases. Majda [6, pp. 111–155] has in-
vestigated the existence and stability of shock solution of Euler
systems, and Guès et al. [11] have investigated the existence and
stability of a shock layerwhich converges toMajda’s inviscid shock
with vanishing viscosity.

This basic definition provides no practical criterion for a shock
wave in a real flow field, where diffusion effects always exist,
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because it is cumbersome or impossible to verify the convergence
condition for a specific flow field. Several methods for detection of
shocks in a given flow field have been proposed, andWu et al. [13]
classified shock wave detection methods as four types. A straight-
forward notion is to determine shock wave by contours that the
shock waves locate at the area with extremely dense pressure
contours. This method is frequently used qualitatively by direct
reading of contours, and can also be realized quantitatively by al-
gorithms [14,15], which determine the shock wave by this sharply
changing feature. More subtle methods based on the physical fea-
tures of flow fields near shocks include density gradient [16], nor-
mal Mach number [17], and characteristics [18,19]. However, all
these methods cannot be derived from the governing equations
and basic definitions in a rigorous mathematical manner.

From both theoretical and practical aspects, a connection is re-
quired between the inviscid and viscous systems. Dynamical sys-
tem theory incorporates the qualitative properties of differential
equations and provides powerful tools for analysis of non-linear
equations. There are numerous papers dealing with conservation
laws employing the dynamical system approach. Zhang et al. in-
vestigate shock waves in Burgers’ equation from approximate in-
ertial manifolds [20] and bifurcation theory [21]. Kasimov [22]
studies the stationary circular hydraulic jump via dynamical sys-
tem theory. Hong et al. [23–25] discuss all steady states, including
a stationary shock wave in a quasi-one-dimensional nozzle with
geometric singular perturbation method based on the canard the-
ory [26]. Inviscid and viscous systems were investigated, and the
viscous system was treated as the singular perturbed system of
the inviscid system. The small scale diffusion in the shock wave
and the large scale quantities of the flow field were incorporated
in a slow–fast system derived from the singular perturbed system.
For flow fields with relatively small flow variable gradient, the be-
havior is dominated by the slow system, where viscous effects can
be neglected; whereas for regions with extremely large gradient,
the fast system, where viscous effects dominate, plays the central
role. Thus, the shock wave is recognized as a fast motion, and a
finer description of shockwave can be derived than using the invis-
cid Euler equations including the Rankine–Hugoniot condition. A
similar but more complicated problem was studied by Fan and Lin
[27,28], where the phase transition between liquid and vapor was
included. They showed the existence and some properties of a fast
evaporation layer. Both Hong et al. [23–25] and Fan and Lin treat
the shock layer problem as a slow–fast system and resolve the two
scale motion outside and inside the shock layer as the slow and
fast systems. Thus, the shockwave in the viscous system can be de-
fined as the fast motion in a slow–fast system. Nevertheless, they
only discussed the one-dimensional case, or higher dimensionality
with some special symmetry conditions.

In the present study, Hong et al.’s formulation [23–25] is
extended to higher dimensionality. Compared with the one-
dimensional case, the major difficulty for this extension is that the
governing equations are no longer ordinary differential equations
(ODEs), butmore complicated partial differential equations (PDEs),
and dynamical system theory is not as successful in the PDE arena.
Indeed, existing theory on slow–fast systems concentrates on ODE
systems and there is no similar theory onmultidimensional gas dy-
namics. Accordingly, the present paper does not intend to investi-
gate all the mathematical details of the existence, uniqueness, and
stability of the solution. We outline the proof of existence of the
solution using Lipschitz construction, similar to Lions’ proof [29]
of the existence and regularity of general compressible flow. The
C∞ smooth ODE system is constructed based on the mollifications
of the Lipschitz continuous solution of PDEs. Properties of the ODE
system are then studied using the geometric singular perturbation
theory and an explicit criterion is proposed to identify the shock
wave in the planar steady flow.

Section 2 discusses the governing equations and the important
streamline flattening technique is introduced. Geometric singular
perturbation theory is applied to the system in Section 3, and
dynamical properties of fluid flow along each streamline are
investigated. In Section 4, the theory developed in Section 3 is
employed to study shock wave detecting techniques. Section 5
provides our final conclusions. Proofs and calculations are included
in the appendices. Existence and regularity proved in Appendix A,
the Lipschitz modification is introduced in Appendix B, and some
calculations are completed in Appendix C.

2. Basic equations

2.1. Physical assumptions

A proper interpretation of diffusion effects, a modified NSF
model, will provide a shock wave structure very close to
experiments [3–5]. However, when dealing withmacroscopic flow
field, such a fine resolution of shock structure is unnecessary
because varying the diffusion effects in an NSF model will only
change the shock structure quantitatively. For example, Gilbarg [8]
concluded that the NSF model omitting heat diffusion can
provide qualitatively correct shock structure, which is adequate
for the macroscopic flow study. The flow is usually assumed
to be one-dimensional in shock structure studies where shear
stresses play the same role as bulk stresses. When extending to
the two-dimensional case, shear stresses may lead to complex
vortex structures and bring extra difficulties. Indeed, existence
and regularity theory and other mathematical problems of the
Navier–Stokes equation are open questions, and somewhat more
difficult to solve. On the other hand, the Euler equation without
diffusion effects is difficult to solve due to poor regularity. Hence,
an intermediate model is required, where some diffusion effects
are included to smooth the solution,while other effects are omitted
to exclude difficult problems.

The physical model for the present study was based on the
discussion in Batchelor [30, pp. 151–154]. The main diffusive
process in the shock wave is due to thermodynamical non-
equilibrium,which is the departure ofmechanical pressure, p, from
the thermodynamic pressure or equilibriumpressure, pe. In sudden
expansion or compression of a fluid particle, mechanical pressure,
which is defined as the negative mean normal stress, changes
immediately. However, the thermodynamic state of the particle
cannot change immediately and requires a relaxation process. This
introduces an extra variable to the system and an extra equation
governing the non-equilibrium relaxation process is required. For
this, the pressure departure is assumed to be proportional to the
velocity divergence,

p − pe = −µv∂xiui, (1)

where the summation convention is used; andµv, i = 1, 2, 3, xi, ui
represent the bulk viscosity, the three directions, spatial coordi-
nates, and the velocity components, respectively. Note that this
non-equilibrium model is an approximation for the widely used
treatment based on relaxation time, τ , in which the relaxation is
added to the governing equation by a source term, such as (p −

pe)/τ . An extra conservation law should be introduced for the non-
equilibrium variable. It was shown in [31,32] that the source term
model with an extra conservation law can be well approximated
by a viscous term, such as (1). Thus, the relatively simple non-
equilibriummodel from Batchelor [30] was chosen for the present
study.

The gas is assumed to be inviscid and obey the ideal gas law,
pe = ρRT , where R, T are the positive gas constant and tempera-
ture, respectively, with heat capacity ratio γ = 1.4; and the me-
chanical pressure, p, is not equal to the thermodynamic pressure,
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