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h i g h l i g h t s

• Combination of Ibragimov’s theory of formal Lagrangians with variational integrators.
• Significant extension of the applicability of variational integrators.
• Numerical schemes for the 2D vorticity equation preserving circulation, enstrophy and energy.
• Covariant generalisation of Arakawa’s discretisation of the Jacobian.
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a b s t r a c t

Variational integrators for Lagrangian dynamical systems provide a systematic way to derive geometric
numerical methods. These methods preserve a discrete multisymplectic form as well as momenta
associated to symmetries of the Lagrangian via Noether’s theorem. An inevitable prerequisite for the
derivation of variational integrators is the existence of a variational formulation for the considered
problem. Even though for a large class of systems this requirement is fulfilled, there are many interesting
examples which do not belong to this class, e.g., equations of advection–diffusion type frequently
encountered in fluid dynamics or plasma physics.

On the other hand, it is always possible to embed an arbitrary dynamical system into a larger
Lagrangian system using the method of formal (or adjoint) Lagrangians. We investigate the application of
the variational integrator method to formal Lagrangians, and thereby extend the application domain of
variational integrators to include potentially all dynamical systems.

The theory is supported by physically relevant examples, such as the advection equation and
the vorticity equation, and numerically verified. Remarkably, the integrator for the vorticity equation
combines Arakawa’s discretisation of the Poisson brackets with a symplectic time stepping scheme in
a fully covariant way such that the discrete energy is exactly preserved. In the presentation of the results,
we try to make the geometric framework of variational integrators accessible to non specialists.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the field of structure-preserving or geometric discretisation [1–3] has become a flourishing discipline of numerical
analysis and scientific computing. One particular family of geometric discretisation methods is that of variational integrators [4–10],
which are based on the discretisation of Hamilton’s principle of stationary action [11–15]. Variational integrators preserve a discrete
multisymplectic form and have good longtime energy behaviour. As we will see, they can be designed to preserve energy even exactly,
which in practicemeans up tomachine precision. Furthermore, they preservemomenta associated to symmetries of the discrete equations
of motion via a discrete version of Noether’s theorem [16,17].

While in most standard discretisation techniques for dynamical systems the equations of motion are directly discretised, the basic idea
of variational integrators is to construct a discrete counterpart to the considered system. This means that the fundamental building blocks
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of classicalmechanics and field theory, namely the action functional, the Lagrangian, the variational principle, and theNoether theorem, all
have discrete equivalents. The application of the discrete variational principle to the discrete action then leads to discrete Euler–Lagrange
equations. The evolution map that corresponds to the discrete Euler–Lagrange equations is what is called a variational integrator. The
discrete Noether theorem can be used to relate symmetries of the discretised system to discrete momenta that are exactly preserved by
this integrator. Whereas most standard techniques put emphasis on the minimisation of local errors, for variational integrators the focus
is rather on the preservation of global or geometric properties of the system.

An obvious limitation of the variational integrator method is its applicability to Lagrangian systems only. This excludes a large class of
interesting systems, for example the problems of advection–diffusion type often found in fluid dynamics and plasma physics. We propose
here that the method of formal (or adjoint) Lagrangians [18] can be used as an expedient to avoid this limitation. More specifically, formal
Lagrangians allow us to embed any given system into a larger system which, in turn, admits a Lagrangian formulation. To obtain a formal
Lagrangian L, the equation at hand, say F [u] = 0, is multiplied by an adjoint variable v, giving L = v · F [u]. Variation of the resulting
action functional, A =


L dn+1x, with respect to v gives the original equation F [u] = 0. Variation of the action functional with respect

to the physical variable u gives an additional equation that determines the evolution of the adjoint variable v.
At first sight one might be tempted to regard the formal Lagrangian formalism as merely a method for obtaining a weak formulation of

the problem at hand. Then, if our goal is to obtain an integrator, the details of the dynamics of the adjoint variable vwould seem irrelevant.
However, it turns out that the dynamics of v play a key role in relating symmetries of the formal Lagrangian to conservation laws satisfied
by u. Ibragimov [19–21] developed a theory for the analysis of conservation laws of arbitrary differential equations by extending the
Noether theorem to formal Lagrangians. This leads to conservation laws for the extended system (u, v), which can be restricted to the
original system provided that it is possible to express the solution of the adjoint variable v in terms of u.

In this work, we propose the combination of the discrete variational principle with Ibragimov’s theory in order to derive variational
integrators for systems without a natural Lagrangian formulation and to determine the associated discrete conservation laws. Thereby we
extend significantly the applicability of the variational integrator method. The goal of this approach is to design numerical schemes which
respect certain conservation laws of a given system in a rather systematic way.

We proceed as follows. In Section 2, we present the theory of variational integrators in simple terminology. To set the stage and fix
notation we review the continuous action principle for field theories and the corresponding Noether theorem before passing over to the
discrete theory, which is extended to account for discrete divergence symmetries. The style of presentation is chosen to make the theory
accessible to a wide audience without extensive background in modern differential geometry. This implies some loss of generality, but
hopefully not too much of the geometric beauty of the original work is lost. In Section 3, we recall the inverse problem of the calculus of
variations, review the theory of formal Lagrangians and explain the derivation of conserved quantities in this setting. We also provide a
geometric formulation of the theory, which to our knowledge has not been presented, yet. Finally, in Section 4, we apply the method to
someprototypical examples, including the advection equation and the vorticity equation, and verify the theoretical properties in numerical
experiments. More elaborate numerical examples for the Vlasov–Poisson system aswell as ideal and reducedmagnetohydrodynamicswill
be presented elsewhere [22–24]. The examples we provide here can be seen as building blocks for these more complicated systems.

2. Variational integrators

2.1. Geometry and notation

In this work, we are concerned with the discretisation of partial differential equations (PDEs) of evolution type. A field is a map
u : X → F from a bounded domain X ⊂ Rn+1 taking values in an open set F ⊆ Rm. Most often, X corresponds to some region of
spacetime with coordinates

x = (xµ) = (x0, xi) = (t, x, y, z) with 0 ≤ µ ≤ n, 1 ≤ i ≤ n,

and n = dim X − 1 being the number of space-like dimensions. Most of the theoretic results rely neither on this space-plus-time splitting
nor on X being a subset of an Euclidean space. Thus X can be replaced by a differentiable manifold, in which case the results are valid
locally in a coordinate chart. Points on F are denoted by y = (ya)with 1 ≤ a ≤ m and m = dim F being the number of field components.
We make use of the Einstein summation convention on repeated indices, both for coordinates and fields.

The configuration of a field u is geometrically represented by its graph

graph(u) =

(x, y)

 y = u(x)

,

which is a subset of the Cartesian product

Y = X × F =

(x, y)

 x ∈ X, y ∈ F

.

With the projection onto the first factor,

π : Y → X,
(x, y) → x,

we can define a geometrical structure (Y , X, π) called (trivial) fibre bundle. Here, X is called the base space, Y the configuration space, and
F the fibre. Local coordinates on Y are given by

(xµ, ya) with 0 ≤ µ ≤ n, 1 ≤ a ≤ m.

A field u can be identified with a section of the bundle, i.e., a map ϕ : X → Y , satisfying the condition

π ◦ ϕ = idX ,
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