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HIGHLIGHTS

We derive analytic approximations for the Blasius function f and its derivatives.

We extend the integral iteration scheme for the Blasius problem devised by H. Weyl.
We compute very accurate bounds for the second derivative of f at the origin.

We discuss the new approximations in the context of generalized Padeé theory.
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The classical boundary layer problem formulated by Heinrich Blasius more than a century ago is revisited,
with the purpose of deriving simple and accurate analytical approximations to its solution. This is achieved
through the combined use of a generalized Padé approach and of an integral iteration scheme devised by
Hermann Weyl. The iteration scheme is also used to derive very accurate bounds for the value of the
second derivative of the Blasius function at the origin, which plays a crucial role in this problem.
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1. Introduction

The Blasius problem is a prototypal example illustrating the
development of a boundary layer as a result of the interaction
between a weakly viscous flow and an obstacle, a phenomenon
that is ubiquitous in nature. By now, it has more than a century
of life, during which it has developed a vast bibliography; detailed
information about this problem, together with a reminder of the
essential literature, can be found in the recent review [1].

Here we only sketch the basic physical picture. Consider a
steady, uniform flow impinging on a thin, wide plate parallel to
it, and choose a (X, Y) Cartesian coordinate frame such that the
flow points in the positive X direction and the plate is placed along
the half-plane Y = 0,X > 0. For X > 0, the stream is basically
undisturbed at large Y, but the flow must slow down when
approaching the plate, because the fluid velocity must be zero at
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the solid boundary. In a low viscosity fluid, such as air or water, this
only happens in a narrow region near the plate, named “boundary
layer”, or “shear layer”, in which viscosity effects become essential.
The main problem then is to compute the flow in this layer, and to
match it with the flow outside.

Scale analysis of the steady-state Navier-Stokes equations
shows that, in a first approximation, pressure gradients can
be neglected within the boundary layer, so that the dominant
balance, in the longitudinal (X) direction, is between the nonlinear
advection terms and the leading viscosity term,
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where (u, v) are the (X, Y) components of the flow, and v is the
kinematic viscosity. Together with mass continuity, dxu-+dyv = 0,
this equation can be solved to yield the steady flow components in
the boundary layer. Alternatively, the equilibrium equations can
be reduced to a single third-order, nonlinear partial differential
equation (PDE) for the flow streamfunction (see, e.g., [1]).

It turns out, however, that the problem can be further simpli-
fied, thanks to the existence of a continuous group of invariance,
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Blasius function, its first 2 derivatives & a related function

x df/dx /f

Fig. 1. The Blasius function f (x) [solid black] is plotted with its first derivative [red
dashed] and second derivative [blue dots]. The function (x/f (x))df /dx, which has a
starring role in later derivations, is the thick green curve with markers.

pointed out by Blasius himself. This implies that the streamfunc-
tion is not a function of X and Y separately, but is instead a function
of a similarity variable x = Y /X'/2. As a consequence, the problem
becomes one-dimensional, with the third-order PDE reducing to a
third-order, nonlinear ordinary differential equation (ODE),

foxx +ffxx =0, (1)

which is referred to as the Blasius equation (BE hereafter). Here, f
is related to the streamfunction of the two-dimensional problem,
and the subscript denotes derivation with respect to the similarity
variable x.

Eq. (1) needs to be solved subject to boundary conditions both
at the origin and at infinity (see [ 1] for further details):

f0) =£0)=0,  fi(oo) =1. (2)

The boundary problem (1)-(2) was solved in [2] using the Cheby-
shev pseudospectral method. Fig. 1 shows the resulting profiles of
f(x) and of its first two derivatives, together with that of the func-
tion xf, /f, which will be useful in the developments to follow. This
very accurate numerical solution - errors for f and its first three
derivatives are smaller than 10~ over the whole real axis - will be
used as a reference in the present work. All the functions plotted
in Fig. 1 are smooth and monotonic. The Blasius function f has a
simple structure: it grows like x* at small x, and asymptotes to x
plus a negative constant at large x.

Despite the simple shape of the solution and the long history
of the subject, analytic insight on the BE is still limited. While an
accurate approximation for f,, is known (see the next section), to
the best of our knowledge, nobody has yet been able to provide
a simple analytic approximation for f(x) of comparable accuracy.
Constructing such an approximation is the main objective of the
present note.

2. Some basic results

The series expansion of f about the origin,
2 3 4
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was computed by Blasius himself, who derived a recurrence
relation for the coefficients of the expansion. The coefficients
depend on the parameter

Kk = f(0), (4)

XM (3)

which also has a physical meaning, being proportional to the shear
stress on the plate. The parameter is a priori unknown, and not
easy to compute analytically (we will come back to this issue later
on). However, a second group invariance of the BE, discovered
by Topfer [3], allows for an efficient numerical computation of «,
which is approximately given by k ~ 0.332057336. High preci-
sion values of « and of the other constants that enter the Blasius
problem can be found in Table 4.1 of [1].

Although the existence of a complex pole had long been known
[4], a detailed understanding of the structure of the singularities
of the BE in the complex plane has been achieved much more
recently [2]. Among other results, it was found that the three
singularities closest to the origin, which determine the radius of
the convergence of the series expansion, lie on a circle of radius
S, where S &~ 5.69. It was also shown in [2] that the series can
be accelerated using Euler’s summation, and that the accelerated
series appears to converge everywhere on the positive x axis, which
is the physical domain of the flow.

Treating the BE as a linear, first order ODE for f, yields the well-
known expression

1 X
fu = K exp (—5 /0 déf(é)) , (5)

which explains the fast decay of f,, with x shown by Fig. 1.

Expression (5) also suggests that a guess for f that is good
at small x should give an approximation for f,, accurate over a
wider x-range, because the main contribution in the rhs of (5)
comes from small x. One could place the series expansion (3) in
(5), as Bairstow [5] did, but would then be confronted with the fact
that the series has a finite radius of convergence. Bairstow noted,
however, that taking f & (« /2)x? yields

K
0 = fo = Kk exp (—Ex3) , (6)
where CG stands for cubic-Gaussian. The approximation (6) is fairly
accurate for x not too large: it is still within 1% from the numerical
solutionatx = 2.5, whereas the guess for f only preserves a similar
accuracy up tox = 1.5.

It turns out that Bairstow’s approach can be refined, to build a
much better approximation for fyy,

exp(—0.012515170232088x°)
K )
(14 0.005052091484171x3)3

which will be used here to test the accuracy of the approximations
to be derived. The - non-trivial - derivation of this reference
approximation, due to Parlange, Braddock and Sander [6], is
sketched in the review [1].

Finally, we note that integration by parts of the identity f (x) =
fo" d&fe yields an integral expression for f in terms of its second
derivative,

PBS _
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(7)

f(X)=/ d§(x — &) fzz (8). (8)
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This suggests an iterative approach based on (5) and (8): given a
guess for f that satisfies the boundary conditions at the origin, one
could compute f,, through (5), then get a new guess for f using (8),
and so on. Would this approach prove convergent, it could be used
to derive accurate numerical approximations to the solution of the
BE.

3. Weyl’s integral approach
The idea of iterating between f and f,, is not new. It goes back

to a trio of articles on the BE and related boundary layer problems
that Hermann Weyl published three quarters of a century ago.
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