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h i g h l i g h t s

• We describe non-asymptotic stability of simple robust heteroclinic cycles.
• Essential asymptotic stability is equivalent to positive local stability indices.
• Almost complete instability is equivalent to negative local stability indices.
• Stability changes in transverse bifurcations differ for cycles of types A, B, C .
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a b s t r a c t

Heteroclinic cycles and networks exist robustly in dynamical systemswith symmetry. They can be asymp-
totically stable, and gradually lose this stability through a variety of bifurcations, displaying different
forms of non-asymptotic stability along the way. We analyse the stability change in a transverse bifur-
cation for different types of simple cycles in R4. This is done by first showing how stability of the cycle or
network as awhole is related to stability indices along its connections— in particular, essential asymptotic
stability is equivalent to all local stability indices being positive. Then we study the change of the stability
indices. We find that all cycles of types B and C are generically essentially asymptotically stable after a
transverse bifurcation, and that no type B cycle can be almost completely unstable (unlike type C cycles).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In general dynamical systems heteroclinic cycles are not a
generic phenomenon, being of possibly high codimension due to
the nontransversal intersection of invariant manifolds. However,
in systemswith symmetry they can exist robustly. They are associ-
ated with intermittent dynamics, where long periods of seemingly
stationary behaviour are interrupted by short intervals of drastic
change. Asymptotic stability of a large class of cycles is well under-
stood, see the work of Krupa and Melbourne [1–3]. Melbourne [4]
was the first to discover that heteroclinic cycles often exhibit more
diverse stability properties than the classic dichotomy between
asymptotic stability and complete instability, which is typical, for
instance, of hyperbolic equilibria. He defined essential asymptotic
stability (e.a.s.) to describe attraction of a large measure set that is
not a full neighbourhood. More recently, Podvigina and Ashwin [5]
introduced stability indices σ and σloc as tools for quantifying sta-
bility and attraction along a trajectory.1

E-mail address: alexander.lohse@math.uni-hamburg.de.
1 Note that they use predominant asymptotic stability (p.a.s.) for the same

attraction property that Melbourne [4] called e.a.s.

In this paper we study the different forms of non-asymptotic
stability that heteroclinic cycles display as a transverse eigenvalue
becomes positive. It is structured as follows. In Section 2 we recall
thewell-known setting inwhichheteroclinic cycles occur as robust
phenomena and provide relevant definitions of stability properties
and indices. Then, in Section 3 we show how essential asymptotic
stability and its unstable counterpart almost complete instability are
related to the index σloc, our main result being that for a hetero-
clinic cycle or network X ⊂ Rn the following holds (Theorem 3.1):

(i) X is e.a.s. ⇔ σloc > 0 along all connecting trajectories.
(ii) X is a.c.u. ⇔ σloc < 0 along all connecting trajectories.

In Section 4 we apply our results to heteroclinic cycles in R4

to obtain a complete picture of stability configurations during
transverse bifurcations for the cycles classified as simple in [3].
This yields general results about non-asymptotic stability of simple
cycles in R4.

2. Preliminaries

Consider a vector field on Rn given through a smooth
differential equation ẏ = f (y), where f is Γ -equivariant under the
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action of a finite group Γ ⊂ O(n), that is,

f (γ .y) = γ .f (y), ∀ γ ∈ Γ ∀ y ∈ Rn.

A heteroclinic cycle is a collection of finitely many equilibria ξi, i =

1, . . . ,m, together with trajectories connecting them:

[ξi → ξi+1] ⊂ W u(ξi) ∩ W s(ξi+1) ≠ ∅.

We set ξm+1 = ξ1 and write X to represent the heteroclinic cycle,
i.e. the union of equilibria and connections. It is well-known that if
the connections [ξi → ξi+1] are of saddle–sink type in a fixed-point
subspace, then the cycle persists under perturbations respecting
the Γ -equivariance and is called robust.

In the simplest case these fixed-point spaces are two-
dimensional. We slightly adapt the definition of [3, p. 1181]: let
Σj ⊂ Γ be an isotropy subgroup and Pj = Fix(Σj). Assume that
for all j = 1, . . . ,m the connection [ξj → ξj+1] is a saddle–sink
connection in Pj. Write Lj = Pj−1 ∩ Pj. A robust heteroclinic cycle
X ⊂ R4

\ {0} is called simple if

(i) dim(Pj) = 2 for each j,
(ii) X intersects each connected component of Lj \ {0} in at most

one point,
(iii) the linearisation df (ξj) has no double eigenvalues.

It is these cycles thatwe focus our attention on in Section 4.Note
that condition (iii) was not part of the definition in [3], but seems
to have been silently assumed in most of the literature. This was
noticed by Podvigina andChossat [6]who subsequently introduced
the term pseudo-simple for cycles fulfilling only (i) and (ii).

Chossat et al. [7] classify simple cycles in R4 into types A, B
and C and study bifurcations for each type. The same partitioning
is also used in the context of asymptotic stability by Krupa and
Melbourne [3] as well as Podvigina and Ashwin [5]. We reproduce
this classification here from [3].

Definition 2.1 ([3, Definition 3.2]). Let X ⊂ R4 be a simple robust
heteroclinic cycle.

(i) X is of type A if Σj ∼= Z2 for all j.
(ii) X is of type B if there is a three-dimensional fixed-point

subspace Q with X ⊂ Q .
(iii) X is of type C if it is not of type A or B.

All simple cycles of types B and C in R4 are enumerated in
[3, Section 3(b)]. We recall their result in the next lemma,
employing the usual notation B±

m and C±
m , where m indicates the

number of equilibria in the cycle and the superscript ± gives
information on the symmetry group Γ , denoting whether −1 ∈

Γ (−) or −1 ∉ Γ (+). For example, a B−

3 cycle has three equilibria
and −1 ∈ Γ , while a B+

2 cycle consists of two equilibria and
−1 ∉ Γ .

Lemma 2.2 ([3]). There are seven distinct simple heteroclinic cycles
of types B and C in R4 and the only finite groups Γ ⊂ O(n) that allow
them are the ones denoted in parentheses:

• B+

1 (Z2 n Z3
2), B

+

2 (Z3
2), B

−

1 (Z3 n Z4
2), B

−

3 (Z4
2)

• C−

1 (Z4 n Z4
2), C

−

2 (Z2 n Z4
2), C

−

4 (Z4
2).

Krupa and Melbourne [1,3] derive criteria for asymptotic
stability of cycles in Rn (with a suitable generalisation of types A,
B and C) depending on the eigenvalues of the vector field at each
equilibrium. In a heteroclinic network (a connected union of more
than one cycle), none of the individual cycles is asymptotically
stable due to the presence of a connection with at least one
other cycle. This gives rise to interesting dynamics regarding
competition between cycles in a network as studied in [8] and
creates a need for intermediate notions of stability—in particular
that of essential asymptotic stability as introduced byMelbourne [4]

and Brannath [9], where Brannath corrects a small inaccuracy in
Melbourne’s definition. We give a short overview of these and
other stability concepts that we shall use.

In the rest of this work, let Bε(X) be an ε-neighbourhood of a
set X ⊂ Rn. We write B(X) for the basin of attraction of X , i.e. the
set of points x ∈ Rn with ω(x) ⊂ X . For δ > 0 the δ-local basin of
attraction is

Bδ(X) := {x ∈ B(X) | ∀t > 0 : φt(x) ∈ Bδ(X)},

where φt(.) is the flow generated by the system of equations. By
ℓ(.)we denote Lebesguemeasure, using a subscript to indicate the
respective dimension where necessary.

As a counterpart to asymptotic stability (a.s.) we recall the
notion of complete instability from [2].

Definition 2.3 ([2, Definition 1.2]). A compact invariant set X is
called completely unstable (c.u.) if there is a neighbourhood U and
a set D with ℓ(D) = 0, such that for all x ∈ U \ D there is t0 > 0
with φt0(x) ∉ U .

For the intermediate notions of stability we need the concept of
relative (in)stability, extended from [10].

Definition 2.4. A compact invariant set X with X ⊂ N is called

1. asymptotically stable relative to N if for every neighbourhood U
of X there is a neighbourhood V of X such that for all x ∈ V ∩ N
we have ω(x) ⊂ X and φt(x) ∈ U for all t > 0.

2. completely unstable relative to N if there is a neighbourhood U
of X such that for all x ∈ U ∩ N there is t0 > 0 with φt0(x) ∉ U .

Now essential asymptotic stability and almost complete
instability can be formulated in terms of (in)stability relative to a
large measure set.

Definition 2.5 ([9, Definition 1.2]). A compact invariant set X is
called essentially asymptotically stable (e.a.s.) if it is asymptotically
stable relative to a set N ⊂ Rn with the property that

lim
ε→0

ℓ(Bε(X) ∩ N)

ℓ(Bε(X))
= 1. (1)

Definition 2.6 ([2, Definition 1.2]). A compact invariant set X is
almost completely unstable (a.c.u.) if it is completely unstable
relative to a set N ⊂ Rn with property (1).

Finally, we use fragmentary asymptotic stability (f.a.s.) from
Podvigina [11] for any set with a positive measure basin of
attraction.

In the next section, this terminology allows us to translate
statements about stability of an entire cycle into statements about
the stability indices along its connections and vice versa. We
always state the strongest (in)stability property possible, i.e. when
we say X is e.a.s. (a.c.u.) we implicitly mean that it is not a.s. (c.u.),
and when we only call a set f.a.s. if it is neither e.a.s. nor a.c.u.

Podvigina and Ashwin [5] introduced the following stability
index to quantify the attractiveness of a compact, invariant set X ,
Section 2.3 in [5].

Definition 2.7 ([5, Definition 5]). For x ∈ X and ε, δ > 0 define

Σε(x) :=
ℓ(Bε(x) ∩ B(X))

ℓ(Bε(x))
, Σε,δ(x) :=

ℓ(Bε(x) ∩ Bδ(X))

ℓ(Bε(x))
.

Then the stability index at x (with respect to X) is set to be

σ(x) := σ+(x) − σ−(x),



Download English Version:

https://daneshyari.com/en/article/1898352

Download Persian Version:

https://daneshyari.com/article/1898352

Daneshyari.com

https://daneshyari.com/en/article/1898352
https://daneshyari.com/article/1898352
https://daneshyari.com

