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h i g h l i g h t s

• The spring–mass model is transformed into a two-point boundary value problem (BVP).
• Calculation of stable solutions is reduced to the calculation of their boundaries.
• The complete solution manifold of the model is computed for the first time.
• Our approach can be extended for investigation of gait transitions and variability.
• Our approach is numerically stable. All BVPs can be solved using single shooting.
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a b s t r a c t

The spring–mass model and its numerous extensions are currently one of the best candidates for
templates of human and animal locomotion. However, with increasing complexity, their applications can
become very time-consuming. In this paper, we present an approach that is based on the calculation
of bifurcations in the bipedal spring–mass model for walking. Since the bifurcations limit the region of
stable walking, locomotion can be studied by computing the corresponding boundaries. Originally, the
model was implemented as a hybrid dynamical system. Our new approach consists of the transformation
of the series of initial value problems on different intervals into a single boundary value problem.
Using this technique, discontinuities can be avoided and sophisticated numerical methods for studying
parametrized nonlinear boundary value problems can be applied. Thus, appropriate extended systems
are used to compute transcritical and period-doubling bifurcation points as well as turning points. We
show that the resulting boundary value problems can be solved by the simple shooting method with
sufficient accuracy, making the application of the more extensive multiple shooting superfluous. The
proposed approach is fast, robust to numerical perturbations and allows determining completemanifolds
of periodic solutions of the original problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The planar spring–mass model is an effective tool for investi-
gating human and animal locomotion [1,2]. It was first devel-
oped for hopping and running [3,4] and was later extended to
the bipedal model for walking [5]. Due to the complexity of the
mechanics of human locomotion, its study often requires an ex-
tension of the model such as a segmentation of the leg spring
[6,7], the upright trunk extension [8], the swing leg control [9]
or the stance leg control [10]. The growing complexity of the
model often results in considerably increased computational effort.
Therefore, a new approach is required to work efficiently with the
model in future.
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Periodic solutions of the model mostly correspond to continu-
ous locomotion patterns. In particular, stable periodic solutions are
robust against small perturbations, which reduce the risk to fall [5].
Therefore, their study plays a very important role. In the bipedal
spring–mass model, curves of periodic solutions are usually con-
nected by bifurcations [11,12]. Moreover, these bifurcations also
confine the regions of stable periodic walking [12]. Hence, it ap-
pears more appropriate and efficient to calculate a couple of bifur-
cations instead of computing the manifolds of periodic solutions.

Bifurcations are qualitative changes in the dynamics of the
system, like vanishing stability or changing shape of the phase
portrait. Bifurcation points are determined by parameter values,
at which these changes happen [13,14]. They are also singularities
in the mathematical model, which cannot be found by standard
numerical techniques. Therefore, their computation requires a
special approach, like the so called extended systems based on
the well-known Lyapunov–Schmidt reduction [15–20]. Here, the
original problem is embedded into a higher dimensional boundary
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Fig. 1. Two subsequent steps of the bipedal spring–mass model for walking. The points on the centre of mass (CoM) trajectory show events of vertical leg orientation (VLO),
touch-down (TD) and take-off (TO). Black and grey parts of the CoM trajectory represent single- and double-support phases, respectively. FP is the position of a foot point.
The first step begins in VLO1 at time t0 and ends in VLO2 at t3 . Events TD1 and TO1 occur at times t1 and t2 . The second step ends in VLO3 .

value problem. Then, the solutions of this extended problem can
be determined with numerical standard techniques like shooting
methods.

Unlike the single-legged spring–mass model for running, the
bipedal model provides all common kinds of bifurcations like
turning points, secondary bifurcation points or Hopf bifurcations
[11,12]. The bipedal spring–mass model has also a manifold of
solutions [5,11]. However, only some of them are biologically
relevant. A human walking gait is usually characterized by single-
and double-support phases as well as by double-humped patterns
of the vertical ground reaction force [21,22]. For this, we consider
solutions of the bipedal spring–mass model with double-humped
force patterns only, and define walking as the locomotion gait
with at least one leg always having ground contact. Furthermore,
we do not consider walking patterns with appearance of negative
horizontal velocity, i.e. it is not allowed to walk backwards.

So far, the model was implemented as a hybrid dynamical
system [23–25]. This implementation is described in Section 2. To
apply appropriate techniques, we first transform the model into a
two-point boundary value problem (BVP, Section 3). The resulting
BVP and the corresponding extended systems for computation
of bifurcations (Section 4) are solved using the well-approved
software package RWPM [26–28].

2. The bipedal spring–mass model

2.1. Original implementation

The planar bipedal spring–massmodel consists of twomassless
leg springs supporting the point mass m, which represents the
centre of mass (CoM) of the human body [5]. Both leg springs have
the same stiffness k0 and rest length L0. The location and velocity
of the CoM in the real plane R2 are given by (x1, x3)T and (x2, x4)T ,
respectively.

Any walking gait is completely characterized by four fun-
damental system parameters (the leg stiffness k0, the angle of
attack α0, the leg length L0, the system energy E0) and the four-
dimensional vector of initial conditions (x̂1, x̂2, x̂3, x̂4)T [5]. The
calculation starts at the instant of vertical leg orientation (VLO,
[11,29], Fig. 1), i.e. when the CoM is located directly above the foot
point of the supporting leg during single support. The system is
energy-conservative, i.e. the system energy E0 remains constant
during the whole step. In VLO, the system energy is given by

E0 = mgx̂3 +
m


x̂22 + x̂24


2

+
k0
2


L0 − x̂3

2
. (1)

Unless otherwisementioned,we set x̂1 := 0, L0 := 1m,m := 80 kg
and k0 = 16 kNm−1. The systemenergy E0 is varied to find families
of periodic solutions.

One walking step comprises the first single-support phase,
double-support phase and the second single-support phase (Fig. 1).
The trajectory of the CoM in each phase is the solution of an
initial value problem (IVP). Events of touch-down and take-off are
transitions between the phases. The step begins in VLO1 and ends
in VLO2.

In the following, we give an overview of this implementation of
the model.

2.1.1. First single-support phase
The first single-support phase starts in the first instant of VLO.

The IVP in this phase is given by

ẋ1(t) = x2(t)

ẋ2(t) =
1
m

k0 (L0 − L1(t))
x1(t)
L1(t)

ẋ3(t) = x4(t)

ẋ4(t) =
1
m


k0 (L0 − L1(t))

x3(t)
L1(t)

− mg
 (2)

and the vector of initial conditions is x(t0) = (x̂1, x̂2, x̂3, x̂4)T . Here,

L1(t) :=


x21(t)+ x23(t) is the length of the first compressed leg

spring during stance. The transition from the first single-support
phase to the double-support phase (touch-down) happens at time
t1, when the landing condition x3(t1) = L0 sin(α0) is fulfilled
(Fig. 1).

2.1.2. Double-support phase
The double-support phase starts at the time t = t1. Here, the

IVP is given by

ẋ1(t) = x2(t)

ẋ2(t) =
1
m


k0 (L0 − L1(t))

x1(t)
L1(t)

+ k0 (L0 − L2(t))
x1(t)− xf

L2(t)


ẋ3(t) = x4(t)

ẋ4(t) =
1
m


k0 (L0 − L1(t))

x3(t)
L1(t)

+ k0 (L0 − L2(t))
x3(t)
L2(t)

− mg

,

(3)

where L2(t) :=


(x1(t)− xf )2 + x23(t) is the length of the second

compressed leg spring and (xf , 0) is the position of the second foot
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