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HIGHLIGHTS

We present an algorithm to find principal manifolds of high-dimensional datasets.

We illustrate the approach using the standard swiss-roll dataset.

The presented algorithm rejects noise gracefully and avoids sudden failures.

Compared to Isomap, we show improved results on data reduction of collective motion.
Performance with respect to smoothing, data density, and noise is analyzed.
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ABSTRACT

While the existence of low-dimensional embedding manifolds has been shown in patterns of collective
motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the
analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which
limits control over the mapping from the original high-dimensional space to the embedding space. Here,
we propose an alternative approach that demands a two-dimensional embedding which topologically
summarizes the high-dimensional data. In this sense, our approach is closely related to the construction
of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness
constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-
dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of
geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms
of local coordinates. Through representative examples, we show that compared to existing nonlinear
dimensionality reduction methods, the principal manifold retains the original structure even in noisy
and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained
from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing,
and the resulting two-dimensional embedding is compared with that of a well-established nonlinear
dimensionality reduction method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

[7-9] and behavioral measures [ 10] as the group navigates through
space. In this context, Nonlinear Dimensionality Reduction (NDR)

With advancements in data collection and video recording
methods, high-volume datasets of animal groups, such as fish
schools [1,2], bird flocks [3,4], and insect and bacterial swarms
[5,6], are now ubiquitous. However, analyzing these datasets is still
a nontrivial task, even when individual trajectories of all members
are available. A desirable step that may ease the experimenter’s
task of locating events of interest is to identify coarse observables
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offers a large set of tools to infer properties of such complex multi-
agent dynamical systems.

Traditional Dimensionality Reduction (DR) methods based on
linear techniques, such as Principal Components Analysis (PCA),
have been shown to possess limited accuracy when input data
is nonlinear and complex [11]. DR entails finding the axes of
maximum variability [12] or retaining the distances between
points [ 13]. Multi Dimensional Scaling (MDS) with Euclidean met-
ric is another DR method, which attains low-dimensional rep-
resentation by retaining the pairwise distance of points in low
dimensional representations [13]. However, Euclidean distance
calculates the shortest distance between two points on a manifold
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Fig. C.1. Using Isomap to create a two-dimensional embedding of a simulation of collective behavior. (a) Predator mobbing of twenty agents moving on a translating
circular trajectory on a plane (enclosing a predator moving at constant speed at a 45° angle), axes y,;_1, y2; generally represent coordinates for the ith agent. (b) Scaled
residual variance of candidate low-dimensional embeddings produced by Isomap using different nearest neighbor values k (green-circle, brown-square, and black-triangle),
and (c) two-dimensional representation of the data for five nearest neighbors (black-triangle). Green and blue crosses mark the start and end points of the trajectory. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

instead of the genuine manifold distance, which may lead to
difficulty in inferring low-dimensional embeddings. The isomet-
ric mapping algorithm (Isomap) resolves the problem associated
with MDS by preserving the pairwise geodesic distance between
points [14]; it has recently been used to analyze group properties
in collective behavior, such as the level of coordination and frag-
mentation [ 15-19]. Within Isomap, however, short-circuiting [20]
created by faulty connections in the neighborhood graph, manifold
non-convexity [21,22] and holes in the data [23] can degrade the
faithfulness of the reconstructed embedding manifold.

Diffusion maps [24] have also been shown to successfully iden-
tify coarse observables in collective phenomena [25] that would
otherwise require hit-and-trial guesswork [26]. Beyond Isomap
and diffusion maps, the potential of other NDR methods to study
collective behavior is largely untested. These include, Kernel PCA
(KPCA) which requires the computation of the eigenvectors of the
kernel matrix instead of the eigenvectors of the covariance matrix
of the data [27]; Local Linear Embedding (LLE) that embeds high-
dimensional data through global minimization of local linear re-
construction errors [11]; Hessian LLE (HLLE) that minimizes the
curviness of the higher dimensional manifold by assuming that the
low-dimensional embedding is locally isometric [28]; and Lapla-
cian Eigenmaps (LE) that perform a weighted minimization (in-
stead of global minimization as in LLE) of the distance between
each point and its given nearest neighbors to embed high dimen-
sional data [29].

Iterative NDR approaches have also been recently developed
in order to bypass spectral decomposition which is common in
most of NDR methods [30]. Curvilinear Component Analysis (CCA)
employs a self-organized neural network to perform two tasks,
namely, vector quantization of submanifolds in the input space and
nonlinear projection of quantized vectors onto a low dimensional
space [31]. This method minimizes the distance between the input
and output spaces. Manifold Sculpting (MS) transforms data by bal-
ancing two opposing heuristics: first, scaling information out of un-
wanted dimensions, and second, preserving local structure in the
data. MS is robust to sampling issues, and iteratively reduces the
dimensionality by using a cost function that simulates the relation-
ship among points in a local neighborhoods [30]. The Local Spline
Embedding (LSE) is another NDR technique that embeds the data
points using splines that map each local coordinate into a global
coordinate of the underlying manifold by minimizing the recon-
struction error of the objective function [32]. This method reduces
the dimensionality by solving an eigenvalue problem while the lo-
cal geometry is exploited by the tangential projection of data. LSE
assumes that the data is not only unaffected by noise or outliers,
but also, sampled from a smooth manifold, which ensures the ex-
istence of a smooth low dimensional embedding.

Due to the global perspective of all these methods, none of
them provide sufficient control over the mapping from the original
high-dimensional dataset to the low-dimensional representation,
limiting the analysis in the embedding space. In other words, the
low-dimensional coordinates are not immediately perceived as
useful, whereby one must correlate the axes of the embedding
manifold with selected functions of known observables to deduce
their physical meaning [26,14]. In this context, a desirable feature
of DR that we emphasize here is the regularity in the spatial
structure and range of points on the embedding space, despite the
presence of noise.

With regard to datasets of collective behavior, nonlinear meth-
ods have limited use for detailed analysis at the level of the
embedding space. This is primarily because the majority of these
methods collapse the data onto a lower dimensional space, whose
coordinates are not guaranteed to be linear functions of known
system variables [33]. In an idealized simulation of predator in-
duced mobbing [34], a form of collective behavior where a group
of animals crowd around a moving predator, two degrees of
freedom are obvious, namely, the translation of the group and
the rotation about the predator (center of the translating circle).
This two-dimensional manifold is not immediately perceived by
Isomap, even for the idealized scenario presented in Fig. C.1, where
a group of twenty individuals rotate about a predator moving at
a constant speed about a line bisecting the first quadrant. Specifi-
cally, the algorithm is unable to locate a distinct elbow in the resid-
ual variance vs. dimensionality curve, not withstanding substantial
tweaking of the parameters—the inferred dimensionality is always
1 (Fig. C.1b). For a two-dimensional embedding (Fig. C.1c), visual
comparison of the relative scale of the axes indicates that the hori-
zontal axis represents a greater translation than the vertical axis. It
is likely that the horizontal axis captures the motion of the group
along the translating circle. The vertical axis could instead be as-
sociated with (i) motion about the center of the circle, or (ii) noise,
which is independent and identically distributed at each time step.
The ambiguity in determining the meaning of such direction indi-
cates a drawback of Isomap in providing meaningful interpreta-
tions of the low-dimensional coordinates.

An alternative approach to DR, one that does not require heavy
matrix computations or orthogonalization, involves working di-
rectly on raw data in the high-dimensional space [35,36]. We pro-
pose here a method for DR that relies on geodesic rather than
Euclidean distance and emphasizes manifold regularity. Our ap-
proachis based on a spline representation of the data that allows us
to control the expected manifold regularity. Typically, this entails
conditioning the data so that the lower dimensions are revealed.
For example, in [35], raw data is successively clustered through a
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