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h i g h l i g h t s

• The Equation Free (EF) framework is applied to a disease eradication problem.
• An effective set of coarse variables and their related operators is proposed.
• Good agreement between the EF and full models is observed for many parameter values.
• Using the EF approach results in a factor of two speedup over the full model.
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a b s t r a c t

Although disease transmission in the near eradication regime is inherently stochastic, deterministic quan-
tities such as the probability of eradication are of interest to policy makers and researchers. Rather than
running large ensembles of discrete stochastic simulations over long intervals in time to compute these
deterministic quantities, we create a data-driven and deterministic ‘‘coarse’’ model for them using the
Equation Free (EF) framework. In lieu of deriving an explicit coarsemodel, the EF framework approximates
any needed information, such as coarse time derivatives, by running short computational experiments.
However, the choice of the coarse variables (i.e., the state of the coarse system) is critical if the resulting
model is to be accurate. In this manuscript, we propose a set of coarse variables that result in an accurate
model in the endemic and near eradication regimes, and demonstrate this on a compartmental model
representing the spread of Poliomyelitis. When combined with adaptive time-stepping coarse projective
integrators, this approach can yield over a factor of two speedup compared to direct simulation, and due
to its lower dimensionality, could be beneficial when conducting systems level tasks such as designing
eradication or monitoring campaigns.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The eradication of diseases has long been a focus of the global
health community and researchers in epidemiology and other re-
lated fields. Although smallpox has been eradicated [1,2], this
achievement required substantial financial support, worldwide co-
ordination, and implementation time. The Global Polio Eradication
Initiative (GPEI) is a modern-day eradication campaign focused on
eliminating Poliomyelitis (polio); since the initiative’s creation in
1988, the worldwide incidence of wild poliovirus (WPV) has de-
creased by 99% [3], but it has not yet been eradicated. In 2012,
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transmission of theWPV serotype 1 and 3 occurred in Afghanistan,
Nigeria, and Pakistan [3–5], and efforts toward the eradication of
the disease are currently ongoing [51].

The mathematical modeling of disease transmission and cam-
paign implementation can play a supporting role in the final thrust
toward eradication [58], andhas becomemore important than ever
due to the rarity of symptomatic cases of Poliomyelitis. Among their
many other uses, mathematical models have been used to deter-
mine policies for the efficient distribution of a limited quantity of
vaccine [6], to reveal the factors that can jeopardize an eradica-
tion campaign [7], and to quantify the impact that uncertainty in
the model parameters will have on disease transmission as well
as the optimal response [8–10]. As such, highly accurate models
that capture a wide array of behaviors and exploit all data mea-
surements taken in the field are of particular interest. However,
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the concomitant increase in the dimensionality of these models
makes detailed mathematical analysis computationally challeng-
ing. More tractable ‘‘coarse’’ models, which have a reduced set
of possible dynamics, may be contentious due to various model-
ing adherents, competing modeling viewpoints, and philosophi-
cal paradigms. The benefit of coarse models is their potential to:
(1) provide an enhanced level of understanding about the nature
of the underlying system [11–15] such as identifying which reac-
tions occur ‘‘slowly’’, and (2) their (generally) lower computational
costs [16–19]. Our focus in this manuscript is on the latter task: we
seek to use coarse models as a tool to reduce the computational
cost of system evolution.

When the underlying governing equations (e.g., the reaction
pathways and rates of a discrete stochastic system) and expected
behaviors are known, then a number of highly efficient ‘‘coarse
graining’’ techniques are already available. Methods such as Com-
putational Singular Perturbation (CSP) [11,18] generate a lower or-
der model by identifying a reduced set of reactants, which is an
approach taken bymany techniques [20–22]. Another widely used
set of methods are based on the master equation associated with
a given discrete stochastic system, and are valid even when the
eradication of a population could occur [14,13,15,23,24,68]. These
techniques can produce analytical coarse models that capture the
transition probability between a set of coarse states (e.g., states
where eradication has occurred, and states where it has not), and
also allowmeaningful statistical quantities, such as the mean time
until eradication, to be computed.

Another category of model reduction or coarse graining meth-
ods can be referred to as ‘‘data driven’’ methods, which seek to
identify a lower dimensional description of a dynamical behavior
without complete knowledge of the underlying dynamical system.
Data driven methods include but are not limited to the Proper Or-
thogonal Decomposition [25], which is also frequently referred to
as Principal Component Analysis (PCA), Dynamic Mode Decompo-
sition (DMD) [26,27,66], which has its roots in Koopman spectral
analysis, and the Eigensystem Realization Algorithm (ERA) [28].
These methods use ‘‘snapshots’’ of the system state to generate
a reduced order approximation of the underlying dynamical sys-
tem. In many applications, the accuracy of these methods can-
not be guaranteed, and therefore, the resulting reduced order
model must be validated against a pre-existing set of experimen-
tal or numerical data (see Ref. [29] for an exception). Nonetheless,
these methods are commonly used for model reduction when the
evolution operator is a (system of) partial differential equations
[26,66,65,30].

In this manuscript, we assume that we are provided with a
mechanism for identifying disease free realizations, but that the
underlying evolution equation (i.e., the detailed system) is other-
wise a ‘‘black box’’. For problems with these constraints, the Equa-
tion Free (EF) framework is a widely used, data driven method for
generating an implicit coarse model. In particular, our objective
is to demonstrate that the EF framework can be used to produce
coarse models for problems involving the eradication of a disease,
and that the resulting models are accurate enough to reproduce
the probability of eradication and other useful quantities such as
the leading statistical moments of the marginal population distri-
butions. Although wewill illustrate the EF approach on a compart-
mental model for the transmission of Poliomyelitis, the variables
and techniques we present could, withminormodification, also be
applied to systems modeled by stochastic differential equations or
individual models.

Regardless of the precise nature of the underlying dynamical
system, the EF framework assumes that it possesses a ‘‘slow’’ man-
ifold that solution trajectories (or, here, the statistics of an ensem-
ble of solution trajectories) will approach after some initial, ‘‘fast’’
transient has elapsed. To exploit the existence of the slow man-
ifold, a set of ‘‘coarse’’ variables that parameterize that manifold

must be defined. Accompanying these variables is a restriction op-
erator, which maps from an ensemble of detailed states to a single
coarse state, and a lifting operator that maps from a coarse state
to a ‘‘compatible’’ set of detailed states. Algorithmic methods for
selecting these variables is the focus of current research, but in
many EF applications, the choice of coarse variables and these op-
erators are user defined. The EF framework is mature and has been
used in a number of contexts [62,31,32], including epidemiolog-
ical modeling [33], but this is the first time it has been applied
in the near eradication case. Therefore, there is no pre-existing
‘‘right’’ choice of coarse variables or operators to use in this regime.
As a result, part of our contribution in this paper is to showcase
the efficiency of several ‘‘common sense’’ choices of coarse vari-
ables that have been used in other contexts [34,33] for eradication
problems. Furthermore, we also demonstrate that the evolution of
‘‘summary statistics’’, such as the probability of eradication, can be
effectively accomplished by including them as part of the coarse
state.

In lieu of defining an explicit evolution operator for the coarse
system, the EF method uses short bursts of judiciously initialized
detailed simulations to approximate time derivatives of the coarse
variables. These time derivatives in conjunction with (slightly
modified versions of) the integrators developed for systems of
Ordinary Differential Equations (ODEs) [35–37], are then used to
advance the state of the coarse system in a process called coarse
projective integration (CPI). The benefit of this procedure is that the
time steps taken by these integrators are on the ‘‘slow’’ timescale,
and can be very large when compared to the timescales of the de-
tailed system. This can result in significant computational savings
as detailed simulations only need to be performed in short bursts
to estimate coarse time derivatives rather than in a single, large
simulation to advance the detailed state over the same time inter-
val. In many applications of EF, a simple projective Euler method is
enough to yield accurate results. Our second contribution in this
paper is to demonstrate that more sophisticated coarse projec-
tive integrators should be used in this context; they produce more
accurate approximations of meaningful quantities such as the
probability of eradication, and are not significantly more compu-
tationally expensive than projective Euler.

The remainder of this manuscript is outlined as follows: in
Section 2 we give a brief review of compartmental models as they
appear in epidemiology. In Section 3, we provide an outline of the
Equation Free framework and its application to compartmental
models. In Section 4, we define several candidates for coarse
variables, and demonstrate their efficacy. In Section 5, we do the
same with coarse projective integrators using the distribution-
based coarse variables defined in the previous section. Finally,
in Section 6 a brief discussion and some concluding remarks are
given.

2. Compartmental methods in epidemiology

The overarching goal of many numerical methods in epidemi-
ology is to predict the future state (i.e., the spread, migration, or
eradication) of a disease either in its endemic state or in the face
of external forcing such as seasonal rainfall [52] or man made
events such as routine or supplemental immunization activities
[53,58,38,39]. This task can be accomplished via many fundamen-
tally different types of models including individual (agent-based)
models, where an ensemble of unique agents are generated and
evolved, or compartmental models, where individuals are lumped
into compartments that describe common subsets of the popula-
tion [60]. For brevity, only compartmental models are considered
here, but similar results exist for the agent-based models.

Compartmental models for disease transmission are often for-
mulated as systems of ODEs, and can be efficiently solved for fixed
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