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h i g h l i g h t s

• Obtains analytical approximations for near-uniform and near-solitary wave profiles.
• Genuinely nonautonomous approach associates with hyperbolic and homoclinic solutions.
• Computed using normal and tangential deformations of stable and unstable manifolds.
• Small forcing need not have compact support, decay at infinity, or differentiability.
• Provides a tool for finding the number of solitary waves for a given small forcing.
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a b s t r a c t

Recently developed nonautonomous dynamical systems theory is applied to quantify the effect of bottom
topography variation on steady surface waves governed by the Korteweg–de Vries (KdV) equation.
Arbitrary (but small) nonlocalised bottom topographies are amenable to this method. Two classes of free
surface solutions – hyperbolic and homoclinic solutions of the associated augmented dynamical system
– are characterised. The first of these corresponds to near-uniform free-surface flows for which explicit
formulæ are developed for a range of topographies. The second corresponds to solitary waves on the free
surface, and amethod for determining their number is developed. Formulæ for the shape of these solitary
waves are also obtained. Theoretical free-surface profiles are verified using numerical KdV solutions, and
excellent agreement is obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Korteweg–de Vries (KdV) equation is an archetypical
evolution equation representing the balance of dispersion and
weak nonlinearity in physical systems that generate waves. The
physical motivation behind the original derivation of Korteweg
and de Vries [1] was to describe long waves propagating in a
rectangular channel, but there are also applications in ion acoustic
waves in plasma, acoustic waves on a crystal lattice, and coupled
oscillators [2–6]. The richness of the behaviour of solutions is such
that there continues to be ongoing numerical and analytical studies
to the KdV equation [7–13, cf.].

The form we examine in this article is the steady forced KdV
equation represented in the dimensionless form [4,5,14–17,11,18]

ηxxx + 9ηηx − 6 (F − 1) ηx = −3px. (1)
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The equation approximates the elevation η(x) of the interface
between the water and air (free-surface) in a two-dimensional
(x, y) gravity affected channel flow. The flow can be characterised
with the dimensionless Froude number F = U/

√
gH , where U

and H are the uniform flow speed and depth in the far field,
respectively, and g is the acceleration due to gravity.We focus here
specifically on the role of the forcing term p(x), which represents
either bottom topography, or an external surface pressure on
the free-surface. The existence of a solitary wave solution is
well-established for p ≡ 0 [1,19]; in this article, we find analytical
approximations for solitarywaves and allied solutionswhen p ≠ 0,
but is small.

When there is no forcing (i.e., with p ≡ 0), (1) is autonomous
and is well-understood in terms of the autonomous (η, ηx)
phase plane (Fig. 1(b)). An analysis for determining free-surface
solutions can be performed in the same autonomous phase plane
when p takes on very specific forms. In the case of Dirac delta
forcing (corresponding to a localised forcing or bump in bottom
topography), solutions can be rationalised as jumping from one
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Fig. 1. Unforced solitary wave, with y = η + 1, p(x) ≡ 0 and F = 1.2. (a) Free-surface profile. (b) Autonomous phase space ζ = ηx = η′ versus η.

solution trajectory to another in the autonomous phase space
[5,16,17,20]. A jump also results from the presence of an inclined
plane on the surface [21]. If p represents a vertical step at
the bottom, solutions can be formed through the intersection
of solution trajectories belonging to two different autonomous
phase spaces [22,23]. Combinations of these three types of forcing
(bump, plate and step) have also been studied in a similar way for
hybrid flows with multiple disturbances [23–26], with an obvious
limitation to a more general type of nonlocalised forcing.

A specific class of nonlocalised p has received some attention
in the literature: sinusoidal functions. When the amplitude of the
sinusoid is small, several studies have established the presence of
chaos in the KdV and similar equations [27–31]. The main tool
used in these analyses is the Melnikov function from dynamical
systems theory [32–34], whose zeros correspond to intersections
between stable and unstable manifolds, and hence chaos via
the Smale–Birkhoff theorem [33]. These studies do not focus on
obtaining free-surface profiles theoretically, since the classical
Melnikov function does not by itself relate to such profiles.
However, recent theoretical developments [35,36] building on the
Melnikov approach provide the proper framework for determining
free-surface profiles for general p(x), under the sole condition that
p is small; indeed, Dirac delta forms are also permissible [37].
The key tool developed by Balasuriya [35] quantifies the normal
and tangential motion of a stable and/or unstable manifold due to
the presence of a nonautonomous perturbation. In this article, we
adapt this theory to enable quantification of the free-surface profile
for the KdV equation for any small p.

In obtaining the free-surface profiles for general p, we need to
view the KdV system not in the (η, ηx)-phase space as is standard
for autonomous or ‘‘jumping between autonomous’’ situations
[5,20,16,17,21–26], but in the genuinely nonautonomous (η, ηx, x)
phase space. This standard approach from dynamical systems is
apparently not present in the KdV literature and is described
in Section 2. This framework enables us to develop two classes
of free-surface solutions which we classify according to dynam-
ical systems terminology as hyperbolic trajectories and homo-
clinic solutions. These solution classes correspond respectively to
near-uniform and near-solitary wave solutions of the KdV equa-
tion, analogous to the perturbation of a uniform stream and per-
turbation of a solitary wave classification of Vanden-Broeck [38].
In Section 3weestablish an analytical formulawhich approximates
the hyperbolic (near-uniform) solution, proving moreover that for
general p there is a unique hyperbolic solution. Physically, this
means that there is one and only one near-uniform free-surface

configuration for the steady forced KdV equation for small bot-
tom topography. In Section 4 we establish a criterion for deter-
mining the number of homoclinic (near-solitary) solutions for a
given forcing function; here ‘homoclinic’ means that the solution
lies on both the stable and the unstable manifolds associated with
the hyperbolic trajectory. This supplements theoretical results by
Choi et al. [18] which characterises this number for compactly sup-
ported even p; here, we establish a tool which works for general
p. We then adapt the theory of Balasuriya [35] to formulate an an-
alytical formula which approximates each of these near-solitary
waves. In Section 5, we demonstrate the excellent agreement be-
tween our theoretical formulæ and numerical solutions to the
KdV equation, finding along the way several unusual looking
steady solitary waves. Our ability to provide explicit analytical for-
mulæ for the free-surface gives excellent initial guesses for our nu-
merical KdV schemes. These can also be utilised as initial guesses in
nonlinear free-surface computations beyond the weakly nonlinear
(KdV) approximation [16,17,21,22,24,25].

In this work we restrict our analysis to supercritical flow with
F > 1. The technical reason for this restriction is that in this case,
the physically relevant near-uniform free-surface configuration
which corresponds to (η, ηx) = (0, 0) is a saddle point in the
phase plane of Fig. 1(b). Such points – or more precisely their
nonautonomous analogues – are structurally stable. Thus, when
p is small but nonzero, a similar near-uniform solution persists;
this is our hyperbolic trajectory. Moreover, the stable and unstable
manifolds persist, allowing for the possibility of them intersecting
to create a homoclinic solutionwhich asymptotes to the hyperbolic
solution as x → ±∞. If we considered subcritical flow in which
F < 1, the phase-portrait of Fig. 1(b) changes somewhat; a centre
(elliptic) point now lies at the uniform free-surface location
(η, ηx) = (0, 0) [16]. Such an entity is not structurally stable, and
thus its persistence cannot be guaranteed for p small but nonzero.
Thus, our analysis for determining near-uniform or near-solitary
solutions breaks down for F < 1. The critical case of F = 1,
addressed in [39], is also not amenable to the present analysis since
once again structural stability of the near-uniform solution is not
assured.

2. Nonautonomous viewpoint

As our governing equation, we consider the integrated version
of (1) given by

ηxx +
9
2
η2

− 6 (F − 1) η = −3p(x) (2)
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