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a b s t r a c t

In this paper we generalize a theorem of M. Hilsum and G. Skandalis stating that the
C∗-algebra of any foliation of nonzero dimension is stable. Precisely, we show that the
C∗-algebra of a Lie groupoid is stable whenever the groupoid has no orbit of dimension
zero. We also prove an analogous theorem for singular foliations for which the holonomy
groupoid as defined by I. Androulidakis and G. Skandalis is not Lie in general.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction: Statement of the theorem and the steps of the proof

The aim of this paper is to generalize Theorem1 of [1] stating that the C∗-algebra of any foliation (of nonzero dimension!)
is stable.

Theorem 1. Let G be a Lie groupoid with σ -compact G(0). Assume that at every x ∈ G(0) the anchor ♮x : gx → TxG(0) is nonzero.
Then C∗(G) is stable.

In other words, C∗(G) is stable whenever G has no orbit of dimension 0.We refer to [2] for the general definition of groupoid
C∗-algebras.

The converse is also true if G is s-connected. Indeed, if G is s-connected and the anchor at x is the zero map, then the orbit
of x is reduced to x. Therefore C∗(G) has a character: the trivial representation of the group Gx

x.
Since the reduced C∗-algebra C∗

r (G) of G is a quotient of C∗(G), it follows that it is also stable when G has no orbit of
dimension 0.

Here however, the converse may fail for the reduced C∗-algebra: the reduced C∗-algebra of the group PSL2(R) is stable!
Our proof is not very different from the one of [1] and based on Kasparov’s stabilization theorem [3]. Note that, unlike

in [1], we do not assume the space G(0) to be compact—but this is actually a rather minor point.
The proof is as follows.
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1. Let x ∈ G(0). There is a section Y of the algebroid A(G) whose image under the anchor is a vector field X satisfying
X(x) ≠ 0. Taking a local exponentiation of X we obtain a relatively compact open neighborhood W diffeomorphic to
U × R where X is proportional to the vector field along the R lines {u} × R.
This step will be clarified in Section 2.1
We thus choose a locally finite cover (Wn) by relatively compact open subsets and diffeomorphisms fn : Un × R → Wn
such thatW ′

n = fn(U ′
n × R) cover G(0) with U ′

n relatively compact in Un. Let pn : Wn → Un be the composition of f −1
n with

the projection Un × R → Un.
2. One may then construct a locally finite family of open subsets Vj of G(0) such that:

• Every Vj sits in aWn(j) and its intersection with each line fn(j)(u × R) is an (open) interval. More precisely, fn(j)(Vj) is of
the form {(x, t) ∈ Un(j) × R; ϕ−

j (x) < t < ϕ+

j (x)} where ϕ−

j , ϕ
+

j : Un(j) → R are smooth and ϕ+

j − ϕ−

j is nonnegative
with compact support.

• The Vj are pairwise disjoint and locally finite: every compact subset ofM meets only finitely many Vj’s.
• For every n, the pn(Vj ∩ Wn) cover U ′

n: we have U ′
n ⊂


j; n(j)=n pn(Vj ∩ Wn).

The details of the constructions of the Vj’s are given in Section 2.2.
3. Let then qj be the characteristic function of Vj. We prove that qj is a multiplier of C∗(G). By local finiteness, the

characteristic function q =


qj of V =


Vj is also a multiplier of C∗(G).
See section Section 3.3.

4. We show that qC∗(G) is a full Hilbert submodule of C∗(G) (see Corollary 9—Section 3.2).
5. Considering a natural diffeomorphism Vj ≃ pn(Vj)×]0, 1[, it follows that the Hilbert C∗(G)-modules qjC∗(G) and qC∗(G)

are stable.
6. Using Kasparov’s stabilization Theorem [3], it follows that C∗(G) is stable.

This follows from Corollary 6—see Section 3.4.

In Section 4, we prove an analogous theorem for singular foliations in the sense of [4]. We prove:

Theorem 2. The C∗-algebra of a singular foliation (as defined in [4]) which has no leaves reduced to a single point is stable.

Themain steps of the proof are the same as for Theorem1. Using vector fields along the foliation,we construct the same small
open subsets Vj. Note that, in proving that the characteristic functions of these Vj are multipliers of C∗(M,F ), we chose to
take a somewhat different path in order to shed a new light to it. This led us to construct groupoid homomorphisms between
singular foliation groupoids (Section 4.2). Of course, we could have used the same kind of proof as for the Lie groupoid case.

2. Geometric constructions

2.1. Nonzero vector fields in the algebroid

LetM be a smooth (open) manifold, x a point ofM , and let X ∈ X(M) be a smooth vector field with compact support on
M such that X(x) ≠ 0. Denote by ΨX = (Ψ t

X )t∈R the flow of X . One can find a codimension one submanifold U of M and a
neighborhood I of 0 in R such that the restriction ofΨX to U× I is a diffeomorphism onto an open (tubular) neighborhoodW
of U inM . In other words, U is a codimension one submanifold ofM which contains x and which is transverse to the integral
curves of X .

IfG is a Lie groupoid and Y a sectionwith compact support of its Lie algebroid such that the vector field X := ♮(Y ) does not
vanish on a point x ∈ G(0), let ZY be the associated right invariant vector field on G andΨZY its flow.We have r ◦Ψ t

ZY
= Ψ t

◦r .
Applying the construction above, one finds a codimension one submanifold U of G(0) and a neighborhood I of 0 in R such

that the composition map

U × I
ΨZY
−→G

r
−→G(0)

is precisely the restriction of the flowΨX of X to U × I and thus a diffeomorphism onto an open neighborhoodW of x in G(0).
Note that s ◦ ΨZY is the projection U × I → U .

Now the following maps are diffeomorphisms:

GU
× I → GW

(γ , t) → ΨZY (r(γ ), t)γ
and GU

U × I × I → GW
W

(γ , t, λ) → ΨZY (r(γ ), t)γΨZY (s(γ ), λ)
−1.

2.2. Construction of the family Vj

In this section, we explain the construction of the Vj’s.
The construction above yields a locally finite cover (Wn) by relatively compact open subsets and diffeomorphisms

fn : Un × R → Wn such that W ′
n = fn(U ′

n × R) cover G(0) with U ′
n relatively compact in Un. We will often identify Wn

and Un × R under fn.
Let pn : Wn → Un be the composition of f −1

n with the projection Un × R → Un. As (Wn) is locally finite and G(0) is
σ -compact, the set of indices is countable; we identify it with N.
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